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Representando informacion.

Queremos representar una magnitud a través de un sistema de

representacion:

Finito soporte fijo, cantidad de elementos acotados

Composicional diversas magnitudes podran representarse con un
conjunto de elementos atémicos que deben ser faciles
de implementar y componer

Posicional la posicién de cada digito determina univocamente
en qué proporciéon modifica su valor a la magnitud

total del ndmero

El soporte formal lo encontraremos en las bases de

representacion numérica.



En términos practicos una base determina la cantidad de
simbolos distintos que podemos encontrar en un digito dado

dentro de nuestra representacion.
Una misma magnitud puede tener distintas representaciones en
distintas bases. Por ejemplo la magnitud asociada al cuatro puede

representarse como:

Base Valor Notacién
2 100 (100)(2)
3 11 (11) 3)
10 4 (4)(10)
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e En base 2, usamos los simbolos 0 y 1 y escribimos los
naturales: 0, 1, 10, 11, 100, 101, 110...

e En base 3, usamos los simbolos 0, 1 y 2 y escribimos los
naturales: 0, 1, 2, 10, 11, 12, 20...

e ..yasi..

Bases mas comunes

Base Simbolos usados
2 (binario) 0,1
8 (octal) 0,1,2,3,4,56,7

10 (decimal) 0,1,2,3,4,5,6,7,8,9
16 (hexadecimal) | 0,1, 2,3,4,5,6,7,8,9,A,B,C,D,E, F
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Cambios de bases

Recordemos que un cambio de base es una operacién que
transforma un nimero n = [1,1,0,1](1101(5) representado como
lista de simbolos para una base dada, por ejemplo 2 (binario) y lo
representa en otra base, por ejemplo 10 (decimal) [1, 3](1310)).

1101(2) — 13(10)

Podemos pensar que el cambio de base es una traduccién entre dos

formas de representar una misma magnitud.
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Cambios de bases: Teorema de la di DE COMPUTACION

iPara qué queremos el cambio de base?

Para convertir una magnitud de una representacién que nos resulta
natural (base 10) a la forma en que representan y almacenan los
datos en la computadora (base 2).
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Cambios de bases: Teorema de la division.

La division euclidea, llamada también teorema o algoritmo de
la divisién va a vincular una magnitud a y una base b diciendo que
hay un dnico cociente y resto que permiten escribir la magnitud a
en base al valor b.

Nos valemos de esto para aplicar operaciones sucesivas que
descompongan a en base a valores b", b"~1 ... b!, sabiendo que
estos b’ se relacionan con el simbolo 4; que va en la posicién i

cuando queremos hacer el cambio de base: a — a.



Cambios de bases: Teorema de la division.

Teorema:
Sean a,b € Z con b # 0.

Existen g,r € Z con 0 < r < |b|
talesque a=bx g+ r
Ademds, g y r son Unicos (de a pares).

iComo lo usamos ?

a=bxqg+r

a=(bxq+n)xb+r
a=[(bxg+n)xb+n]lxb+r

Podemos continuar con la expansién hasta que gy < b
a=A{[(bxgn+rn)xb)+ry_1] x..} xb+rxl
Si distribuimos va a quedar:

a=gux bV iy x b+ 4+ xb+rxb®



S DEPARTAMENTO
<

Cambios de bases: Teorema de la di DE COMPUTACION

Representacion posicional:
Podemos ver que el primer elemento de cada producto es el que va

a aparecer en los digitos de nuestra representacién posicional,

donde:

a=gux by x b+ 4 xb+rxb®

Se puede escribir como:

Lav [v [ [n]r]

O de forma correcta, incluyendo la base:

(quN PN rlr)(b)



Cambios de bases: Teorema de la division.

Ejemplo:
27=2.-10"+7-10=1-2*+1-224+0-2°+1-2t +1.20

27 = (27)(10) = (11011) )

Ejercitacion
Escribir los siguientes niimeros en binario, octal y hexadecimal.

e diez

e quinientos doce

10
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Representacion finita

Cuando pensamos en los nlimeros y cuando los escribimos en la
vida diaria, no contamos con una restriccién evidente en la
cantidad de digitos con los que podemos operar. Pero en un
soporte electrénico, como resulta ser el caso de la computadora,
cada dato se representa con una cantidad finita de elementos. En
el caso de los nimeros podemos pensar que lo que esta acotado
es la cantidad de digitos que podemos emplear. Cada digito
va a poder tener tantos valores distintos como tenga la base.
En base 10 son 10 valores distintos, del 0 al 9, en base 2 son dos

que van del 0 al 1.

11
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Rango de representacion

El rango de representacion viene asociado al tipo de dato, hasta
ahora vimos niimeros naturales (Np), y a la cantidad de digitos que
podemos escribir. Por ahora la forma de computar el rango es
aplicando el célculo de combinaciones cruzadas, por ejemplo una
tira de 4 digitos:

(a3aza1a0)(p)

Donde cada digito puede tener valores entre 0 y b — 1, tiene un

rango igual a:

bxbxbxb=hb*

12
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Rango de representacion

bx bxbxb=hb*

Por ejemplo, si representamos nuestros datos como naturales de
ocho digitos en base 2 tendremos:

2Xx2Xx2X2x2x2x2x2=2%—-256

Esto luego se conocerd como el rango de un entero sin signo en 8
bits, y va del 0 al 255.

13



Overflow

Si una magnitud a representar cae fuera del rango de
representacion, tenemos una situacién que se conoce como
overflow (desborde), ya que no hay forma de representarla en
formato actual. Por ejemplo, para los ocho digitos de base dos del
ejemplo, la magnitud 27 es representable:

27 = (00011011) 5,

Noten que completamos con 0 los digitos a izquierda para escribir
los ocho elementos de nuestra representacion finita. Ahora, la
magnitud 770 no es representable por quedar fuera del rango
overflow:

770 = (1100000010) )

Precisamos 10 digitos como minimo para representar la magnitud
en base 2.
14
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Tipos de datos

Hasta este punto vimos cémo

e Representar ndmeros naturales (Np)

e Interpretar una base niimerica y realizar cambios de base

Los datos tienen su informacién asociada y su tipo de dato. En
el caso que se presenté la informacién asociada son los valores
de cada digito y el tipo de dato serian los naturales acotados.
El tipo nos indica cédmo interpretar la informacién, en este caso
cémo vincular el dato con una magnitud y qué operaciones
podemos realizar con ella.

ii5)
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Tipos numéricos DE COMPUTACION

Vamos a utilizar los siguientes tipos de datos para representar
nimeros naturales y enteros, todos a partir de la representacién en
base 2 (binaria), a saber:

e Sin signo
representa inicamente ndmeros positivos

e Signo 4+ Magnitud
se usa el primer digito (bit) para indicar el signo de la magnitud

e Exceso m
Represento n como m + n.
De esta manera, estamos desplazando la ubicacién de la magnitud
asociada al cero del comienzo del rango de representacién a la
posicién m. Los valores a izquierda de m seran interpretados como
negativos

16



Tipos numéricos

Veamos ejemplos con rangos de representacion para datos de 3
bits. El rango es:

[T v v [l ]

Los datos del rango son siempre iguales, lo que va a cambiar van a
ser las magnitudes asociadas a cada elemento (cémo los
interpretamos). Los datos son:

Vo Vi Vo V3 V4 V5 Ve v7

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

17
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Tipos numéricos

Las magnitudes asociadas al rango seran:

Posicién Vo Vi %3 V3 vy Vs Ve vy

Dato | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Sin signo 0 1 2 3 4 5 6 7
Signo+magnitud 0 1 2 3| 0| -1| -2 -3
Exceso m(m=2) | -2 | -1 0 1 2 3 4 5

Noten que para signo+magnitud hay dos datos asociados al cero
(el valor estd desnormalizado).

18
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Codificando numeros enteros en base binaria $ DE COMPUTACION

e Complemento a 2

e Los positivos se representan igual.

e Para los niimeros negativos la forma practica de saber la
forma en que vamos a representarlos es la siguiente: Si n
es la magnitud a representar y d3d>d;dy los cuatro digitos para
representarlo en 4 bits, lo que haremos es invertir los bits de a
uno (cambiar unos por ceros y ceros por unos) y sumar uno.

e Por ejemplo —4 se representa como inv(4) + 1, en 5 bits serfa:
inv(01000) + 1 = 10111 4+ 1 = 11000.

19



DEPARTAMENTO
PUTACIO|

Codificando numeros enteros en base binaria

e Complemento a 2
e Los positivos se representan igual.
e Otra forma de pensarlo, para los niimeros negativos lo que se
almacena es un complemento n, a partir de:

fi =20 — N
Donde n es la magnitud interpretada,n el dato almacenado y k
la cantidad de digitos (o bits) utilizados para representar al
nimero. O sea lo que guardamos es la resta entre el primer
nimero que se sale del rango y el valor absoluto de n. Esto
también equivale a restar la magnitud a cero y descartar el
acarreo.

20
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Codificando numeros enteros en base binaria

N

e Ejemplo
Quiero representar el ndmero —2(;0) con k = 3 digitos binarios.
Entonces, 20 — 2(15) = 8(10) = 1000
Luego 2 = 1000(2) — 2(19) donde 2 es el complemento a 2 del
ndmero.
Escribimos el 2 en la base correspondiente:

2 =1000(2) — 2(10) — 2 = 1000(2) — 10().

Finalmente | 2 = 110(2)

21



Codificando...

En base 2, datos de 4 bits

DEPARTAMENTO
COMPUTA

Signo 4+ Magnitud | Complemento a 2 | Exceso a 15
3 0011 0011 OVERFLOW
-2 1010 1110 1101
-8 OVERFLOW 1000 0111

22
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Codificando...(con mas bits)

En base 2, datos de 8 bits

Signo 4+ Magnitud | Complemento a 2 | Exceso a 15
3 0000 0011 0000 0011 0001 0010
-2 1000 0010 1111 1110 0000 1101
-8 1000 1000 1111 1000 0000 0111

23
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Similitudes entre 4 y 8 bits

Signo + Magnitud | Complemento a 2 | Exceso a 15
3 0000 0011 0000 0011 0001 0010
-2 1000 0010 1111 1110 0000 1101
-8 1000 1000 1111 1000 0000 0111

Extendiendo la cantidad de bits de precision:
e Signo + Magnitud: Se extiende con Q's, pero el bit mas
significativo se mantiene indicando el signo.

e Complemento a 2: Se extiende con el valor del bit mas
significativo.

e Exceso a m: Se extiende siempre con O's.

24
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Resumiendo: Enteros como numerales binarios

Sin Signo
Solo sirve para los positivos.
Numeral(dato) — ndmero que representa
1111 — 15(10) 0111 — 7(10)
1110 — 1419 0110 — 6(10)
1101 — 134y 0101 — 5(10)
1100 — 12(10) 0100 — 4(10)
1011 — 11(4q) 0011 — 319
1010 — 10(10) 0010 — 2(19)
1001 — 910 0001 — 1(10)
1000 — 8(10) 0000 — Oy10)

Para los numerales de 4 bits.

25



S DEPARTAMENTO
R

Resumiendo: Enteros como numerales binarios

v

Signo+Magnitud

El primer bit es el signo, los demas son el significado (la magnitud
del ndmero en valor absoluto).
numeral — nlimero que representa

1111 — —T) 0111 — ()
1011 — —3g) 0011 — 3(1)
1000 — —0(10) 0000 — 0(10)

Para los numerales de 4 bits.
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Resumiendo: Enteros como numerales binarios

Complemento a dos

Los numerales que representa positivos son iguales a los anteriores
Para los negativos, dado un n negativo se representan escribiendo
2k — n en notacién sin signo
cuentas — numeral — nldmero que representa

2* +(-1) =15— 1111 — -1

) (10) 0111 = 7(10)
24 4+ (—2) = 14— 1110 — —2(10) 0110 — 6(10)
2* +(-3) =13— 1101 — =310 0101 — 5(10)
2* 4+ (—4) = 12— 1100 — —4(10 0100 — 419
2* 4+ (=5) = 11— 1011 — —5(10) 0011 — 310
2* 4+ (—6) = 10—~ 1010 — —6(10) 0010 — 2(10)
2+ (=7)=9 — 1001 — —7(10) 0001 — 1(10)
2* + (—8) =8 — 1000 — —8(10) 0000 — O(10)

Para los numerales de 4 bits.

27
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Resumiendo: Enteros como numerales binarios 30

Exceso a m

El nlimero n se representa como m+ n

cuentas — numeral — ndmero que representa

10) = 15— 1111 — 10(40)
9) =14 — 1110 — 9(10)
8) =13 — 1101 — 8(19)

5+ ( 5+(2)=7 — 0111 — 249
54 ( 5+ (
54 ( 54+ (
5+ (7) =12 — 1100 — 7(10) 5+ (
54 ( 54+ (
5+ ( 5+ (
5+ ( 5+ (
5+ ( 5+ (

1) =6 — 0110 — 1(10)
0)=5 — 0101 — Oy

)

)

) ( —1) = 4— 0100 — —1(;0)
6) =11 — 1011 — 6(10) -2)=3— 0011 — —2(10)
5)=10 — 1010 — 5(10) -3)=2— 0010 — —3(10)
4)=9 — 1001 — 410 —4) =1— 0001 — —4;0)
3)=8 — 1000 — 3(10) —5) = 0— 0000 — —5(10)

Para los numerales de 4 bits en exceso 5.

28
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Leyendo datos

Para interpretar un valor, o sea una tira de valores binarios o
bits, es necesario conocer su tipo. Tipos distintos para un
mismo valor determinan (potencialmente) distintas

magnitudes.

29
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Operaciones aritmético-légicas

Vamos a presentar algunas operaciones aritméticas y légicas en
base 2, en particular o légico, y légico, xor 16gico, negacién
l6gica, desplazamientos, suma, resta y multiplicacion. Todas
las operaciones van a estar asociadas a un algoritmo de resolucién,
del mismo modo que utilizamos uno para realizar cuentas en base
10 en la vida cotidiana.

30
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Propiedades de los datos y las operaciones DE COMPUTACION

N

Es importante comprender que hay atributos que nos interesa
observar tanto de los datos como de las operaciones. Por
ejemplo:

e De los datos numéricos si son negativos o pares

e De las operaciones si los resultados se mantienen dentro del
rango de representacién

31



Propiedades de los datos
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Veamos como observar el dato nos permite determinar propiedades
del valor representado. Por ejemplo, en complemento a 2 de un

dato de 4 bits:

Posicién i v | wv Vo
Interpretacion | signo | x | x | paridad
Negativo 1 X X

Par X 0

32



Operaciones légicas

Las operaciones légicas que veremos pueden involucrar a uno o dos
operandos, se aplican sobre el dato almacenado, o sea los bits
del valor representado.

Las presentamos rapidamente y una por una.

33
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O légico

El o logico o disyuncién se aplica bit a bit. La operacién aV b= ¢
se puede describir atémicamente (por cada elemento indivisible)
como ¢; = a; V b;. Veamos un ejemplo de 4 bits, noten que la
aplicacion no depende del tipo de dato, lo trata indistintamente:

Posicién | 3 v wvi v
a 1 0 1
b| 0 O 1
c=aVvb 1 0 1
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DE COMPUTACION

Podemos notar que las operaciones légicas se aplican bit a bit:

Posicién

a

=<+ o+ ~[&
o+ o + o|S
R+~ =+ R[S
=<+ = + oS

c=aVb

Es posible encontrar al signo + para representar la disyuncién,
porque equivale a una suma sin acarreo en bits. Lo mismo sucede
entre la conjuncién y el signo .
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El y légico se aplica bit a bit. La operacién a A b = ¢ se puede
describir atémicamente (por cada elemento indivisible) como
¢i = aj A\ b;. Veamos un ejemplo de 4 bits:

Posicién | 30 v» v w
a 1 0 1

b| 0 O 1 1
c=aAb 0 0 1

36
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Xor légico

El xor légico se aplica bit a bit. La operacién a¥Y b = ¢ se puede
describir atémicamente (por cada elemento indivisible) como

¢i = (aj A\ —b;) V (—aj A\ b;), exactamente uno de los bits vale 1.
Veamos un ejemplo de 4 bits:

Posicién | va v wv v
a 1 0 1 0

b 0 O
c=aVvb 1 0 O 1

37
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Negacién légica DE COMPUTACION

La negacién légica se aplica bit a bit. La operacién —a = ¢ se
puede describir atémicamente (por cada elemento indivisible) como
¢;i = —aj, dando vuelta los valores de cada elemnto. Veamos un
ejemplo de 4 bits:

Posicién | vs v v v

38
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Desplazamiento a izquierda

El desplazamiento a izquierda se aplica desplazando los bits del
dato tantas posiciones como se indiquen a izquierda. La operacién
a < n = c para un dato de k bits se puede describir atémicamente
como ¢; = aj_, si i < k—n—1y 0 en caso contrario. Veamos un

ejemplo de 4 bits:

Posicién | vi v wvi v
a 1 0 1 0
c=ak?2 1 0 0 0

39
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Desplazamiento légico a derecha

El desplazamiento légico a derecha se aplica desplazando los
bits del dato tantas posiciones como se indiquen a derecha. La
operacién a >, n = c para un dato de k bits se puede describir
atémicamente como ¢; = aj4, si i > ny 0 en caso contrario.

Veamos un ejemplo de 4 bits:

Posicién | vs0 v w1 w
a 1 0 1 0
c=a> 2 0 0 1 0

40
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Desplazamiento aritmético a derecha DE COMPUTACION

El desplazamiento aritmético a derecha se aplica desplazando
los bits del dato tantas posiciones como se indiquen a derecha,
pero copiando el valor del bit mas significativo de origen en los
valores vacantes del resultado. La operacién a >, n = ¢ para un
dato de k bits se puede describir atémicamente como ¢; = aj4p Si
I > ny ag_1 en caso contrario. Veamos un ejemplo de 4 bits:

Posicién | 3 v w1 w
a 1 0 1 0
c=a>,;2 1 1 1 0

41
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Desplazamiento a derecha, observaciones DE COMPUTACION

i Por qué existe una diferencia entre el desplazamiento a derecha
l6gico y aritmético? La aplicacién de una operacién légica puede
tener muchos motivos, pero en particular el desplazamiento a
derecha o izquierda en n posiciones tiene el efecto de multiplicar
o dividir por 2" el valor representado, siempre que se trate de
un entero sin signo o en complemento a dos.
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Desplazamiento a derecha, ejercicio B

DE COMPUTACION

Si a es un valor representado en complemento a dos, jcudndo
valen las siguientes propiedades?

a>; n=a/2"
a>,n=a/2"

Ejercicio para la casa.
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Adicion Binaria

Para realizar operaciones aritméticas como la suma, la resta o la
multiplicacién, podemos intentar utilizar dos conceptos
importantes, por un lado el razonamiento composicional y por el
otro un andlisis extensivos de los casos. El primero tiene que ver
con tratar de resolver la suma representada en base 2 a partir de
cada digito (descomposicién) y el segundo con construir una tabla
que calcule todos los resultados posibles para sumas de un digito

en base 2 (andlisis extensivo).
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Adicion Binaria

Veamos que puede suceder cuando sumamos dos digitos
cualesquiera en base dos:

aj | bj | aj+ b;
010 0
01 1
10 1
1|1 10

Podemos notar que la dltima fila produce un resultado que no se
puede representar con un sélo digito. Para el caso atémico (de un
dnico digito) ese 1 va conocerse como carry o acarreo porque va a
afectar la suma del digito inmediato a izquierda.
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Adicion Binaria

Redefinimos el resultado, diviendo a; + b; entre el resto r; y su
acarreo ¢;:

L
o
IS
=S

= = O O
= O = O
- o O o
O = = O
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Adicion Binaria

Podemos extender la suma, para tener en cuenta el hecho de que
quizas el digito inmediato a derecha produjo acarreo en su suma,
donde ¢; es el carry (acarreo) del digito anterior:

ai | bi | cic1 | | n
0 0 0 01O
0 1 0 0 1
1 0 0 0 1
1 1 0 1]0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1
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Adicion Binaria

Con esto ya podemos definir la adicién binaria para dos niimeros a
y b sin signo de n digitos de la siguiente forma:

carry i | ¢cho1 | Ch2 | ... | G0
a . — dn—1 . al ao
b: — | bp_1 | ... | b1 | by
a+b:|ch1| m1l|...| n|n

Aqui ¢, es lo que consideramos el acarreo de la suma, y se puede
interpretar como un indicador o flag de la propiedad de desborde
de la operacidn, ya que el resultado no es representable en n bits.
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Ejemplo de la suma ey

En decimal En base 3

845 212
+342 +101
1187 1020

49



Resta Binaria

Podemos definir equivalentemente la resta binaria para dos
nimeros a y b sin signo de n digitos de la siguiente forma:

borrow : | bp_1 | bp—> | ... | bg
a . — dn—1 000 =k ao
b: — | bp_1 | ... | b1 | bg
a—b: | b1 | -1 |...! n|n

Aqui by, es lo que consideramos el préstamo o borrow de la resta.
En este caso el borrow se produce cuando el sustraendo es mayor
que el minuendo, por lo tanto, se debe “pedir” al digito adyacente.

50
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Resta y multiplicacion

Como tarea para el hogar, intenten describir primero la operacién
de resta, aplicando descomposicién y anélisis extensivo de los casos
a partir de la resta de a un digito de nimeros enteros sin signo.

Y luego expliquen cédmo deberia resolverse la multiplicacién entre
dos nlmeros de n bits sin signo, no es necesario que se restrinjan a
la descomposicidn y al andlisis extensivo, pueden suponer que se
puede computar un resultado final a partir del computo de
resultados parciales.
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Técnicas de uso corriente




i Cémo pasamos rapido de decimal a binario?

Pasar el nimero 28 y a binario.

Si hacemos divisiones

sucesivas:
28 /2
14 /2
7/2
3/2

= 14
=7
=3
—1

Resto = 0
Resto = 0
Resto = 1
Resto = 1

Quedando asi el nimero

11100.

Otra aproximacion.
Busco 2 > 28 — 5, ya
que 2° = 32. Necesitaré 5
digitos

Sabemos:

x1 % 2% 4+ 30 % 23 4 x3 %
22+ xg % 21 4 x5 % 20
[i[1]1]0]0]
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i Cémo pasamos rapido de binario a hexa?

Pasar el nimero 10101100

e ;Cudnto elementos puedo representar con un digito
hexadecimal?

e 16
e Luego es potencia de 2 directo, 2*

1010 | 1100
A C

e 0 sea puedo separarlos de a 4:

.Y para pasar de hexadecimal a binario?
.Y para pasar a complemento a 27 Hay que hacer la guia...
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Sobre el Overflow y el Carry...

El truco para detectar un overflow es observar que si el bit de signo
es igual en ambos operandos (ambos positivos o negativos) el
resultado de la suma deberia preservar el signo (suma de positivos
produce un positivo, suma de negativos produce un negativo).

overflow <— ((a,,,l = bnfl) AN (a,,,l #* Cnfl))
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Sobre el Overflow y el Carry...

Algunos ejemplos para pensar en C2 (complemento a 2)...

5-3=5+(-3)=2
0101
+1101 (C« Q)
10010
OK!

—5—4=(=5)+(—4)=-9
1011
+1100
10111
(C+ C)
OVERFLOW!

—5—3=(=5)+(-3) = (-8)

1011

+1101 (C« Q)

11000
OK!

5+4+4=09
0101

+0100 (C+ Q)

01001
OVERFLOW!

55



Sobre el Overflow y el Carry...

Noten que el overflow y el carry son propiedades de una
operacion, a diferencia de la paridad o el signo, que son
propiedades de un dato aislado. Para determinar si se cumple una
propiedad de una operacién, puede ser necesario observar tanto los
operandos como el resultado (caso del overflow).
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Cierre




Repaso de la clase

Resumen de la clase practica del dia de la fecha.

e Motivacion, caracteristicas y necesidad de contar con un
sistema de representacién de la informacidn sobre un soporte
dado. Representacion numérica en base 2.

e Formas de representar tipos numéricos, naturales (sin
signo), enteros (signo+magnitud, exceso m,
complemento a 2) y vistazo de racionales(IEEE 754).

e Operaciones légico-aritméticas utilizadas para transformar la
informacién (o légico, y légico, xor légico, negacién
légica, desplazamientos, suma, resta y multiplicacién)y
sus propiedades asociadas (carry y overflow).
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Proximas clases

e iYa se puede hacer la practica 1 completal.
e Circuitos Combinatorios.

e Circuitos Secuenciales.
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Cierre

Pasamos a las preguntas.
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Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X =1si X #0 6 X =0si X #1

(A2) Existe el operador negacién () tal que: SiX =1 = X =0
(A3) 0-0=0 14+1=1



. BEPARTAMENTO

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1)

(A2) Existe el operador negacién () tal que: SiX =1 = X =0
(A3) 0-0=0 1+1=1

(M) 1-1=1 0+0=0

Existen dos elementos: X =1si X #0 6 X =0si X #1



. BEPARTAMENTO

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X =1si X #0 6 X =0si X #1
(A2) Existe el operador negacién () tal que: SiX =1 = X =0
(A3) 0-0=0 1+1=1

(A4)1-1=1 0+0=0

(A5)

A5) 0-1=1-0=0 0+1=1+0=1



Propiedades

De los axiomas anteriores se derivan las siguientes propiedades:

Asociatividad
Distributividad
Absorcién
De Morgan

(A.B).C = A(B.C)
A+ (B.C) = (A+B).(A+C)
A(A+B)=A

B=A+B

Propiedad AND OR
Identidad 1LA=A 0+A=A
Nulo 0.A=0 1+A=1
Idempotencia AA=A A+A=A
Inverso AA=0 A+A=1
Conmutatividad A.B=B.A A+B=B+A

(A+B)+ C=A+(B+C)
A(B+C)=AB+AC
A+AB=A
A+B=AB




Propiedades

De los axiomas anteriores se derivan las siguientes propiedades:

Propiedad AND OR
Identidad 1LA=A 0+A=A
Nulo 0.A=0 1+A=1
Idempotencia AA=A A+A=A
Inverso AA=0 A+A=1
Conmutatividad A.B=B.A A+B=B+A
Asociatividad (A.B).C = A(B.C) (A+B)+C=A+(B+ Q)
Distributividad | A+ (B.C) = (A+ B).(A+ C) A(B+C)=AB+A.C
Absorcién AA+B)=A A+AB=A
De Morgan AB=A+B A+B=AB

Tarea: jDemostrarlas!
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verdadera o falsa:
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Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es
verdadera o falsa:

Solucién:

)-Z4+X-Z+ (Y + Z) +— De Morgan
)-Z+X-Z+Y -Z<«— Distributiva
Y)-Z+(X+Y)-Z+— De Morgan

>
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Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es
verdadera o falsa:

Solucidn:

(
(

(
(

Y)-Z+X-Z+ (Y + Z)<+— De Morgan
-Y)-Z+X-Z+Y-Z<+— Distributiva
Y)-Z+(X+Y)-Z+— De Morgan
+Y)-Z+ (X +Y)-Z<— Distributiva

x|

x|

> X



Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es
verdadera o falsa:

Solucién:

(X-Y)-Z+X-Z+(Y + Z) +— De Morgan
(X-Y)-Z+X-Z+Y -Z<+— Distributiva
Y)-Z+(X+Y)-Z+— De Morgan
+Y)-Z+ (X +Y)-Z<— Distributiva
+Y)-(Z+ Z) < Inverso

|

|
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Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es
verdadera o falsa:

(X-Y)-Z+X-Z+ (Y +Z)<+— De Morgan
(X-Y)-Z+X-Z+Y -Z<+— Distributiva
Y)-Z+(X+Y)-Z+— De Morgan
+Y)-Z+ (X +Y)-Z<— Distributiva
+Y)-(Z+ Z) < Inverso

+7Y) -1+ Identidad




Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es
verdadera o falsa:

(X-Y)-Z+X-Z+ (Y +Z)<+— De Morgan
(X-Y)-Z+X-Z+Y -Z<+— Distributiva
Y)-Z+(X+Y)-Z+— De Morgan
)-Z+ (X +Y)-Z < Distributiva

) (Z + Z) <— Inverso

) - 1 <— Identidad

Lo que queriamos demostrar.
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Notacion

En el lenguaje coloquial vamos a llamar a las operaciones
indistintamente de la siguiente forma:

A+B=AO0ORB
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DEPARTAMENTO

Notacion

En el lenguaje coloquial vamos a llamar a las operaciones
indistintamente de la siguiente forma:
A+B=AO0ORB
AB=AB=AAND B
A= NOT A



Compuertas, seiales y tablas de
verdad
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Compuertas

Son modelos idealizados de dispositivos electrénicos o de
computo, que realizan operaciones booleanas.

Las podemos representar graficamente:




S DEPARTAMENTO
<

Compuertas DE COMPUTACION

Son modelos idealizados de dispositivos electrénicos o de
computo, que realizan operaciones booleanas.

Las podemos representar graficamente:

O describir mediante un lenguaje de descripcién de hardware
(HDL), por ejemplo en SystemVerilog:
assign o = a & b;



DEPARTAMENTO
DE COMPUTACION

Tablas de verdad

Son representaciones que nos permiten observar todas las
salidas para todas las combinaciones de entradas’.

Por ejemplo, la funcién del ejercicio (F = X + Y) se representa:

F

= = O o X
= o R o|<

1 .. a p o
Como resulta esperable, esta representacién puede volverse muy compleja cuando el niimero de variables y
salidas crece.
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Son representaciones que nos permiten observar todas las
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Por ejemplo, la funcién del ejercicio (F = X + Y) se representa:
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DE COMPUTACION

Tablas de verdad

Son representaciones que nos permiten observar todas las
salidas para todas las combinaciones de entradas’.

Por ejemplo, la funcién del ejercicio (F = X + Y) se representa:

= = O o X
= o R o|<

e e =T = e o

1 .. a p o
Como resulta esperable, esta representacién puede volverse muy compleja cuando el niimero de variables y
salidas crece.



Compuertas - NOT

Graficamente:

Tabla de verdad:

A | NOT A
0 1
1 0

En SystemVerilog:

assign o = "a; 8
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Compuertas - AND

Graficamente:

Tabla de verdad:

A B | AAND B
0 O 0
0 1 0
1 0 0
1 1 1

En SystemVerilog:

assign o = a & b;
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Compuertas - OR

Graficamente:

Tabla de verdad:

A B|AORB
0 O 0
0 1 1
1 0 1
1 1 1

En SystemVerilog:

assign o = a b;
g \ L0
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Compuertas - XOR u OR-EXCLUSIVA

N

Graficamente:

) >

Tabla de verdad:

A B | AXORB
0 0 0
0 1 1
1 0 1
1 1 0

En SystemVerilog:

assign o = a " b;
& 11



Entradas y salidas - Categorizacion



Distintas vistas de un circuito

Por momentos vamos a querer abstraer nuestros circuitos en
médulos de los cuales observaremos solamente sus entradas y
salidas. Veamos un ejemplo donde ocultamos parte de la
complejidad pasando de una vista interna del circuito (caja blanca)

a una externa (caja negra).

12



DEPARTAMENTO
Desde el museo: ALU 7

T B & B & B
47 s
‘ 1 - T S152
‘ I I T T I I S3
I 1
I
—t h T
T, " 7 1
I 17 A I E

Cn+d G

13
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Ejemplo con una ALU

Aplicando lo anterior, podemos trabajar con la ALU viéndola de la
siguiente manera:

Registro Z (16) Registro Y (16)

Enviar ADD

Enviar AND
Enviar XOR
Enviar IOR
Enviar NOT
Enviar RAL

16
SALIDAS

14
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Entradas/Salidas

Establecen el sentido de la informacion:
En la ALU anterior se representan con las flechas...

ii5)



. BEPARTAMENTO

Entradas/Salidas R L

Establecen el sentido de la informacion:
En la ALU anterior se representan con las flechas...

En SystemVerilog:

module ALU #(parameter DATAWIDTH = 16)
(input [DATAWIDTH—1:0] operandoZ,
input [DATAWIDTH—1:0] operandoY,
input [2:0] opcode,
output [DATAWIDTH—1:0] salidas ,
output overflow);

end module;

ii5)
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Entradas/Salidas: Tipos

En la ALU, json funcionalmente todas iguales las entradas y
salidas?

Registro Z (16) Registro Y (16)
%15 %15

ALU °”

16
SALIDAS

Enviar ADD

Enviar AND
Enviar XOR
Enviar IOR
Enviar NOT

Enviar RAL

16



S DEPARTAMENTO
<

DE COMPUTACION

Entradas/Salidas: Tipos

En la ALU, json funcionalmente todas iguales las entradas y
salidas?

Registro Z (16) Registro Y (16)
%15 %15

ALU °”

16
SALIDAS

NO

Datos vs. Control

Enviar ADD

Enviar AND
Enviar XOR
Enviar IOR
Enviar NOT

Enviar RAL

16



Légica proposicional a circuitos
combinatorios
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Motivacion

El estudio de la légica proposicional y del dlgebra de Boole tiene
que ver con que vamos a querer implementar funciones légicas en
nuestro soporte electrénico con circuitos combinatorios.

17



DEPARTAMENTO
DE COMPUTACION

Traduciendo una férmula

Sabemos que se puede describir el comportamiento de un circuito
combinatorio construyendo una tabla de verdad que determine las
salidas que corresponden a cada combinacién de los valores de
entrada. Vamos a utilizar esto para describir un procedimiento que
nos permite construir un circuito combinatorio cuyo
comportamiento implementa cualquier férmula proposicional ¢.

18



DEPARTAMENTO
DE COMPUTACION

Traduciendo una férmula

Habra casos en los que nos resultara dificil derivar un circuito de la
férmula, ya sea porque no vemos un vinculo directo entre la
expresion y las compuertas basicas, o porque es conveniente

expresarlo con una tabla de verdad.

19



Mecanismo de traduccion

El mecanismo es el siguiente:
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Mecanismo de traduccion

El mecanismo es el siguiente:

e Si tenemos una férmula ¢ que se expresa en funcién de las
variables xi, ..., x,(las entradas).
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Mecanismo de traduccion

El mecanismo es el siguiente:

e Si tenemos una férmula ¢ que se expresa en funcién de las
variables xi, ..., x,(las entradas).

e Construimos una tabla de verdad con una fila para cada
combinacidén posible de las entradas (por ;.
x1 = 1,x—0,...,x, = 1) y en la columna de la salida y
ingresamos el valor de la férmula evaluada en esos valores

©(1,0,...,1).

20



Mecanismo de traduccion

El mecanismo es el siguiente:
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Mecanismo de traduccion

El mecanismo es el siguiente:

e Vamos a utilizar solamente las filas en las que la funcién vale
1.

21
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Mecanismo de traduccion

El mecanismo es el siguiente:

e Vamos a utilizar solamente las filas en las que la funcién vale
1.

e Para cada fila i en la que ¢ es verdadera (vale 1) vamos a
construir un término t; como conjuncién (y légico o AND) de
todas las entradas, donde cada variable aparece negada si su
valor era 0 en la fila y sin negar en caso contrario.

21
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DE COMPUTACION

Mecanismo de traduccion

El mecanismo es el siguiente:

e Vamos a utilizar solamente las filas en las que la funcién vale
1.

e Para cada fila i en la que ¢ es verdadera (vale 1) vamos a
construir un término t; como conjuncién (y légico o AND) de
todas las entradas, donde cada variable aparece negada si su
valor era 0 en la fila y sin negar en caso contrario.

e Por ejemplo, si en la fila 4 la asignacién (valuacién) de las
variables era x; — 1,x0 — 0,...,x, — 1, t4 va a ser
X1 AN =xg Ao A Xp.

21



Mecanismo de traduccion

El mecanismo es el siguiente:

22



DEPARTAMENTO

Mecanismo de traduccion DE COMPUTACIO

El mecanismo es el siguiente:

e Una vez que tenemos los términos t;, t;,... para cada fila en
la que la funcién vale 1, vamos a hacer una disyuncién (o
l6gico u OR) de todos los términos ¢’ = t; V t; V...

22



Mecanismo de traduccion

El mecanismo es el siguiente:

e Una vez que tenemos los términos t;, t;,... para cada fila en
la que la funcién vale 1, vamos a hacer una disyuncién (o
l6gico u OR) de todos los términos ¢’ = t; V t; V...

e A este mecanismo se lo conoce como suma de productos y
nos da una expresidén de ¢ o de la tabla de verdad que puede
traducirse facilmente a un circuito combinatorio.

22



Volviendo al ejemplo

La férmula (F = X + Y) se representa:

= = o of X
_ o = o<
= = O =M

23



DEPARTAMENTO
MPUTACIO

Volviendo al ejemplo

La férmula (F = X + Y) se representa:

= = o of X
_ o = o<
_ R O |

En este caso los términos serian t; = —x Ay, t3 = x Ay y
ta =x Ay ylaexpresion o' = (-x A—y)V (x A-y)V(xAy).
A esta expresién se conoce como suma de productos.

23



Circuitos basicos
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Ejercicio | - Sumador Simple DE COMPUTACION

Armar un sumador de 1 bit. Tiene que tener dos entradas de un
bit y dos salidas, una para el resultado y otra para indicar si hubo o

Nno acarreo.

24
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Armar un sumador de 1 bit. Tiene que tener dos entradas de un
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Solucion:
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Ejercicio | - Sumador Simple

Armar un sumador de 1 bit. Tiene que tener dos entradas de un
bit y dos salidas, una para el resultado y otra para indicar si hubo o
no acarreo.

Solucion:

A B ‘ Sum ‘ carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

24
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MPUTACIO

Ejercicio | - Sumador Simple

Armar un sumador de 1 bit. Tiene que tener dos entradas de un
bit y dos salidas, una para el resultado y otra para indicar si hubo o
no acarreo.

Solucion:
B

‘ Sum ‘ carry C%ZC_
0

0

0

1

o

= = O Ol)>
= O~ Ol
O = = O

[

24
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Ejercicio Il - Sumador Completo DE COMPUTACION

Teniendo dos sumadores simples (de 1 bit) y sélo una compuerta a
eleccién, arme un sumador completo. EI mismo tiene 2 entradas
de 1 bit y una tercer entrada interpretada como Cj,, tiene como
salida Cour v S.

25
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Ejercicio Il - Sumador Completo DE COMPUTACION

Teniendo dos sumadores simples (de 1 bit) y sélo una compuerta a
eleccién, arme un sumador completo. EI mismo tiene 2 entradas
de 1 bit y una tercer entrada interpretada como Cj,, tiene como
salida Co,: v S. Solucién:
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DEPARTAMENTO

Ejercicio Il - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sélo una compuerta a
eleccién, arme un sumador completo. EI mismo tiene 2 entradas
de 1 bit y una tercer entrada interpretada como Cj,, tiene como
salida Co,: v S. Solucién:

Ch A B | S| Gu
0 0 01O 0
0 0 1|1 0
0 1 01 0
0 1 1]0 1
1 0 01 0
1 0 11]0 1
1 1 010 1
1 1 11 1

25



DEPARTAMENTO

Ejercicio Il - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sélo una compuerta a
eleccién, arme un sumador completo. EI mismo tiene 2 entradas
de 1 bit y una tercer entrada interpretada como Cj,, tiene como
salida Co,: v S. Solucién:

A
C,'n A B 5 Cout ? T
B A
0 0 010 0
carry SUMADOR
0 0 1 1 0 SIMPLE
0 1 0 1 0 o Sum ~
o 1 1|0/ 1 ] I
1 0 0|1] 0 > A
carry SUMADOR
1 0 1|0 1 Y SIMPLE
1 1 0|0 1 Sum
1 1 1 1 1

Sum

25



Ejercicio Il - Shift

Armar un circuito de 3 bits. Este deberd mover a izquierda o a
derecha los bits de entrada de acuerdo al valor de una entrada
extra que actila como control. En otras palabras, un shift izg-der
de k-bits es un circuito de k + 1 entradas (e, ..., &) y k salidas
(Sk—1, -+, S0) que funciona del siguiente modo:

e Sie,=1, entonces s; = ¢_1 paratodo 0 < i< kysy=0
e Sie, =0, entonces s; = ej;1 paratodo 0 < /i< k—1y
Sk—1 = 0

26



Ejercicio Il - Shift

Armar un circuito de 3 bits. Este deberd mover a izquierda o a
derecha los bits de entrada de acuerdo al valor de una entrada
extra que actila como control. En otras palabras, un shift izg-der
de k-bits es un circuito de k + 1 entradas (e, ..., &) y k salidas
(Sk—1, -+, S0) que funciona del siguiente modo:

e Sie,=1, entonces s; = ¢_1 paratodo 0 < i< kysy=0
e Sie, =0, entonces s; = ej;1 paratodo 0 < /i< k—1y
Sk—1 = 0

Ejemplos:

shift_Ir(1,011) = 110

26
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Ejercicio Il - Shift

Armar un circuito de 3 bits. Este deberd mover a izquierda o a
derecha los bits de entrada de acuerdo al valor de una entrada
extra que actila como control. En otras palabras, un shift izg-der
de k-bits es un circuito de k + 1 entradas (e, ..., &) y k salidas
(Sk—1, -+, S0) que funciona del siguiente modo:

e Sie,=1, entonces s; = ¢_1 paratodo 0 < i< kysy=0
e Sie, =0, entonces s; = ej;1 paratodo 0 < /i< k—1y
Sk—1 = 0

Ejemplos:

shift_Ir(1,011) = 110  shift_Ir(0,011) = 001
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Ejercicio Il - Shift

Armar un circuito de 3 bits. Este deberd mover a izquierda o a
derecha los bits de entrada de acuerdo al valor de una entrada
extra que actila como control. En otras palabras, un shift izg-der
de k-bits es un circuito de k + 1 entradas (e, ..., &) y k salidas
(Sk—1, -+, S0) que funciona del siguiente modo:

e Sie,=1, entonces s; = ¢_1 paratodo 0 < i< kysy=0

e Sie, =0, entonces s; = ej;1 paratodo 0 < /i< k—1y

Sk—1 = 0

Ejemplos:

shift_Ir(1,011) = 110  shift_Ir(0,011) = 001
shift_Ir(1,100) = 000

26



Ejercicio Il - Shift

Armar un circuito de 3 bits. Este deberd mover a izquierda o a
derecha los bits de entrada de acuerdo al valor de una entrada
extra que actila como control. En otras palabras, un shift izg-der
de k-bits es un circuito de k + 1 entradas (e, ..., &) y k salidas
(Sk—1, -+, S0) que funciona del siguiente modo:

e Sie,=1, entonces s; = ¢_1 paratodo 0 < i< kysy=0
e Sie, =0, entonces s; = ej;1 paratodo 0 < /i< k—1y
Sk—1 = 0

Ejemplos:

shift_Ir(1,011) = 110  shift_Ir(0,011) = 001
shift_Ir(1,100) = 000  shift_Ir(1,101) = 010

26
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Ejercicio Il - Shift

e Sier=1, entonces s; = ¢;_1 paratodo 0 < i< kysy=0
e Sie, =0, entonces s; = ej11 paratodo 0 < /i< k—1y

Sk—1 = 0

Solucion:
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DEPARTAMENTO

Ejercicio Il - Shift

e Sier=1, entonces s; = ¢;_1 paratodo 0 < i< kysy=0

e Sie, =0, entonces s; = ej11 paratodo 0 < /i< k—1y

Sk—1 = 0
Solucidn:
0 sies=0

S = .
e sies=1

27



DEPARTAMENTO

Ejercicio Il - Shift

e Sier=1, entonces s; = ¢;_1 paratodo 0 < i< kysy=0

e Sie, =0, entonces s; = ej11 paratodo 0 < /i< k—1y

Sk—1 = 0
Solucidn:
0 sies=0

S = .
e sies=1

€3.€1
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DEPARTAMENTO

Ejercicio Il - Shift

e Sier=1, entonces s; = ¢;_1 paratodo 0 < i< kysy=0

e Sie, =0, entonces s; = ej11 paratodo 0 < /i< k—1y

Sk—1 = 0
Solucién:
0 sies=0 0 sies=1
S = . S0 = .
e sies=1 e1 sies=0
€3.€1
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DEPARTAMENTO

Ejercicio Il - Shift

e Sier=1, entonces s; = ¢;_1 paratodo 0 < i< kysy=0

e Sie, =0, entonces s; = ej11 paratodo 0 < /i< k—1y

Sk—1 = 0
Solucién:
0 sies=0 0 sies=1
S = . S0 = .
e sies=1 e1 sies=0
e3.e; e3.e
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DEPARTAMENTO

Ejercicio Il - Shift

e Sier=1, entonces s; = ¢;_1 paratodo 0 < i< kysy=0

e Sie, =0, entonces s; = ej11 paratodo 0 < /i< k—1y

Sk—1 = 0
Solucién:
0 sies=0 0 sies=1 e sies=1
S = . S0 = . S1 = .
e sies=1 e1 sies=0 e sies=0
e3.e; e3.e
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DEPARTAMENTO

Ejercicio Il - Shift

e Sier=1, entonces s; = ¢;_1 paratodo 0 < i< kysy=0

e Sie, =0, entonces s; = ej11 paratodo 0 < /i< k—1y

Sk—1 = 0
Solucién:
0 sies=0 0 sies=1 e sies=1
S = . S0 = . S1 = .
e sies=1 e1 sies=0 e sies=0
e3.e; e3.e e3.ey + €3.e

27



~ DEPARTAMENTO
< DE COMPUTACION

Ejercicio Il - Shift

Solucion:

e02 el e0

e3o T_[>o 0

SHIFT LR w
1

28



Mas combinatorios: Multiplexor y Demultiplexor

DEPARTAMENTO
PUTACIO|

€o —
€1 —
Multiplexor S
€54
1 T
Co C1--- Cnt
L _Sg
LS4
e—Demultiplexor
L Son_q
| |
Co C1 -+ Cnt

Las lineas de control ¢ permiten
seleccionar una de las entradas e, la que

corresponderd a la salida s.

Las lineas de control ¢ permiten
seleccionar cual de las salidas s tendra
el valor de e.

29



Multiplexor y Demultiplexor

e Ejemplo,

Multiplexor

Demultiplexor

30



Mas combinatorios: Codificador y Decodificador

S DEPARTAMENTO
< PUTACIO

.

S
\ Fac
ba)

€o —
€1 —

€n-1-

Decodificador

—-So
-S4

L Son_q

o —
e —

€on_1-

Codificador

—So
S+

Cada combinacién de las lineas e
corresponderd a una sola linea en alto
de la salida s.

Una y sélo una linea en alto de e
corresponderd a una combinacién en la
salida s.
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Codificador y Decodificador

e Ejemplo,

Codificador
o6
€1— @ t—So
€2——10) — S1
&)

Decodificador

Sq1—

00\

11

01)

Y

32
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S DEPARTAMENTO
<

DE COMPUTACION

=

jLas compuertas no son instantaneas!

Revisitemos nuestro Shift LR:

5

e3o T—I>O R

SHIFT LR

s2 s1 s0

33



DEPARTAMENTO

Para el circuito Shift LR anterior, supongamos (de forma
optimista) que todas las compuertas tardan 10ps en poner un
resultado valido en sus salidas. A partir de ello, dibujemos el
diagrama de tiempos para cuando todas las entradas cambian

simultdneamente de '0’ a '1’.

34



S DEPARTAMENTO
<

DE COMPUTACION

Hagamos un diagrama de tiempos?:

e0

el

e 3
loges 1

e3

ao

a2 a2 a0

s0
sl H H
: : SHIFT LR

s2

0 10ps 30ps 50ps t s2 s1 s0

2Y nombremos a las sefiales que no tienen nombre

85



S DEPARTAMENTO
<

DE COMPUTACION

Diagrama de tiempos

€0

el

e2 : 3
: s oes 1

e3

a0

S0 ; N
s1 1
— : SHIFT LR

s2

0 10ps Sdps 50ps t s2 s1 s0

36



S DEPARTAMENTO
<

DE COMPUTACION

=

i Cudl es el minimo tiempo que se debe esperar para leer un
resultado valido de su salida?
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S DEPARTAMENTO
<

DE COMPUTACION

=

i Cudl es el minimo tiempo que se debe esperar para leer un
resultado valido de su salida?

e En un circuito combinatorio el tiempo que tarda la salida en
estabilizarse depende de la cantidad de capas de compuertas
(latencia)
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i Cudl es el minimo tiempo que se debe esperar para leer un

resultado valido de su salida?

e En un circuito combinatorio el tiempo que tarda la salida en
estabilizarse depende de la cantidad de capas de compuertas
(latencia)

e En este caso debemos esperar al menos 3 - 10ps = 30ps para
poder leer la salida.
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DEPARTAMENTO
DE COMPUTACION

i Cudl es el minimo tiempo que se debe esperar para leer un
resultado valido de su salida?

e En un circuito combinatorio el tiempo que tarda la salida en
estabilizarse depende de la cantidad de capas de compuertas
(latencia)

e En este caso debemos esperar al menos 3 - 10ps = 30ps para
poder leer la salida.

iComo enfrentamos este problema?
Secuenciales...

37
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Introduccién Latchs - Flip-flops Registros y memorias Conclusiones
oce 0000000000 00000000000 000

Sobre la clase de hoy

Hoy vamos a ver los principios de disefio, practica y ejemplos de
circuitos secuenciales, la estructura de la clase va ser la siguiente:

Repaso de circuitos combinatorios

Retroalimentacion y cambio de modelo

Circuitos secuenciales asincronicos

Circuitos secuenciales sincronicos
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Sobre la clase de hoy

Hoy vamos a ver los principios de disefio, practica y ejemplos de
circuitos secuenciales, la estructura de la clase va ser la siguiente:

Repaso de circuitos combinatorios

Retroalimentacion y cambio de modelo

Circuitos secuenciales asincronicos

Circuitos secuenciales sincronicos

Latchs - Flip-flops, registros y memorias
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Latchs

Son circuitos que permiten trabar o asegurar el valor de su salida
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Latchs

Son circuitos que permiten trabar o asegurar el valor de su salida

e Permiten el cambio de sus salidas segtin el nivel de las
entradas.

e Utilizan realimentacion

Ejemplo:

2l
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Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:
S Q S R ‘ Q ‘ Q
1 0
0 1
— 0 O
R Q 1 1




Introduccién Latchs - Flip-flops Registros y memorias Conclusiones
0o 00®0000000 00000000000 000

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:
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Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:
S Q S R ‘ Q ‘ Q
1 0 1 0
0 1 0 1
— 0 0| Qx| Q«!?
Q 1 1

1 == . . q
Q* o Qx refiere al estado anterior de la salida 4
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Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:
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Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:
S Q S R ‘ Q ‘ Q
1 0 1 0
0 1 0 1
— 0 0| Qx| Q«!?
R Q 1 1 0 0
Con S,R=(1,1):

1 == . . q
Q* o Qx refiere al estado anterior de la salida 4
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Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:
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Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:
S Q S R ‘ Q ‘ Q
1 0 1 0
0 1 0 1
— 0 0| Qx| Q«!?
R Q 1 1 0 0
Con S,R=(1,1):

e El valor de las salidas es inconsistente con la especificacion

e El valor de las salidas depende de la implementacién. Tarea:
implementar con NANDs

1 == . . q
Q* o Qx refiere al estado anterior de la salida 4
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las
entradas son (1,1):

Latch JK: Tabla de verdad:

ele

@ o

o>
| oo

K
0
1
0
1

= O O |«
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las
entradas son (1,1):

Latch JK: Tabla de verdad:

Y
0

@ o

o>
| oo

K
0
1
0
1

= O O |«
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las
entradas son (1,1):

Latch JK: Tabla de verdad:
J K| Q| Q
> @ o 1 0] 1] 0

- 0 1

| e 0 o

1 1
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1,1):

Latch JK: Tabla de verdad:

@ o

o>
| oo

Y
0
1

= O O |«
= O~ OlX
o
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las
entradas son (1,1):

Latch JK: Tabla de verdad:
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| oo
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las
entradas son (1,1):

Latch JK: Tabla de verdad:

@ o
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| oo

= O O |«
= O~ OlX
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las
entradas son (1,1):

Latch JK: Tabla de verdad:
J K| Q| Q
> @ o 1 0] 1] 0
| 0 1 0 1
j © -0 0 0| Qx| Qx
1 1

Con S,R=(1,1):

e El valor de las salidas esta ahora definido.
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Latch JK

Tratemos de modificar el comportamiento para el caso cuando las
entradas son (1,1):

Latch JK: Tabla de verdad:
J K| Q| Q
> @ o 1 0] 1] 0
| 0 1 0 1
j © -0 0 0| Qx| Qx
1 1

Con S,R=(1,1):

e El valor de las salidas esta ahora definido.

e El circuito oscila (estado inestable).
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Latch D

e Nos permite almacenar 1 bit
e Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

— o o |
= O = OoO|N
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e Nos permite almacenar 1 bit
e Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

Q@

*

Q

— o o |
= O = OoO|N

Conclusiones
000
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0o 0000800000 00000000000

e Nos permite almacenar 1 bit
e Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:
e lQ
Q* | Qx

— o o |
= O = OoO|N

Conclusiones
000
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e Nos permite almacenar 1 bit
e Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

Q|

Qx*

~ Ol g

— o o |
= O = OoO|N
o

Conclusiones
000
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Latch D

e Nos permite almacenar 1 bit
e Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

QO
x

— o o |
= O = OoO|N
o
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Latch D

e Nos permite almacenar 1 bit
e Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:
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= O = OoO|N
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e Nos permite almacenar 1 bit
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Latch D

e Nos permite almacenar 1 bit
e Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:
D clQ]|@
1 0] Qx| Qx
0 1 0 1
0 0| Qx| Qx
1 1 1 0

En este caso el circuito es estable en todos los estados. Sin
embargo:

e Los tiempos no se pueden predecir (dependen de D)
e Puede causar carreras si existe un lazo en el circuito externo. 6
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de los momentos de transicién de estados = CLOCK
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Sincronizando...
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de los momentos de transicién de estados = CLOCK

Vimos también que ser reactivo al nivel de una sefial no es
conveniente = Sensibilidad al flanco
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Sincronizando...

Como vimos en la primer parte, nos interesa poder tener un control
de los momentos de transicién de estados = CLOCK
Vimos también que ser reactivo al nivel de una sefial no es

conveniente = Sensibilidad al flanco

d d  qp— qlatch

ok c clk _I L

e
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Detector de flanco

Necesitamos un circuito que se comporte de |la siguiente manera:

Input__ ['Pulse detector
circuit \

- J__

Qutput

Input

Output 1 1 1 1 1

Entonces, aprovechando los tiempos de propagacion:
SR

Input

Delayed input

Output i
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Flip-Flop D (Delay)

Ahora nuestro latch es sélo sensible a los flancos ascendentes de

clock, entonces:

) Tabla de verdad:
Lo podemos representar:

' D clk ‘ QRQT+1 ‘ QRT+1

set F il
1D QF 1 0
> 0 1t
6 - 0 0
re?et 1 1’]\
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Flip-Flop D (Delay)

Ahora nuestro latch es sélo sensible a los flancos ascendentes de

clock, entonces:

) Tabla de verdad:
Lo podemos representar:

D clk ‘ QRQT+1 ‘ QRT+1

o
D Qr 1 0 Qo
> 0 1t
resetQ — O 0
- 1 1t
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Flip-Flop D (Delay)

Ahora nuestro latch es sélo sensible a los flancos ascendentes de

clock, entonces:

) Tabla de verdad:
Lo podemos representar:

D clk ‘ QRQT+1 ‘ QRT+1

o
1D Qr 1 0| @r | @r
> 0 1t
resetQ — O 0
- 1 17
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Flip-Flop D (Delay)

Ahora nuestro latch es sélo sensible a los flancos ascendentes de

clock, entonces:

) Tabla de verdad:
Lo podemos representar:

D clk ‘ QRQT+1 ‘ QRT+1

set
1D Qr 1 0| @ | @r
> 0o 11| o0 1
resetQ_ O 0
- 1 1t
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Flip-Flop D (Delay)

Ahora nuestro latch es sélo sensible a los flancos ascendentes de

clock, entonces:

) Tabla de verdad:
Lo podemos representar:

D clk ‘ QRQT+1 ‘ QRT+1

set
1D Qr 1 0| @ | @r
> 0o 11| o0 1
reseta I O 0 QT QT
- 1 1t
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Flip-Flop D (Delay)

Ahora nuestro latch es sélo sensible a los flancos ascendentes de

clock, entonces:

) Tabla de verdad:
Lo podemos representar:

set D ck | Qryi | Qria
D Q- 1 0| Qr | @r
> 0o 11| o0 1
resetQ_ O 0 QT QT
: 1 1t 1 0
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Flip-Flop D (Delay)

Ahora nuestro latch es sélo sensible a los flancos ascendentes de
clock, entonces:

) Tabla de verdad:
Lo podemos representar:

set D ck | Qryi | Qria
D Q- 1 0| Qr | @r
> 0o 11| o0 1
reseta_ O 0 QT QT
: 1 1t 1 0

Siendo T =n.Tgoek Y T +1=(n+1)Tgock, donde:

e T lock es el periodo del clock (tiempo que dura un ciclo)

e n es una cierta cantidad de pulsos de clock
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Flip-Flop D (Delay)

Ahora podemos entender bien las diferencias:

d d qp— qlatch ; ! |

ok c a | l [___

D ck q_latch |: I I | I ‘ | |
B L
—

d
Pclk

10
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Flip-Flop J-K

Volviendo al latch J-K, ahora con deteccién de flanco podemos
obtener un comportamiento mas adecuado:

Tabla de verdad:
Ahora lo podemos representar como:

, J K ck| Qry1 | Qrys
—H3 ' QF 1 0 1t
0o 1 1t
> _ 0 0 1t
K reset Q™ 1 1 1t
X X 0

11
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Flip-Flop J-K

Volviendo al latch J-K, ahora con deteccién de flanco podemos
obtener un comportamiento mas adecuado:

Tabla de verdad:
Ahora lo podemos representar como:

, J K ck| Qry1 | Qrys
—H3 ' QF 1 0 1t 0
0 1 1t
> _ 0 0 11
K et Q™ 1 1 1t
X X 0
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Flip-Flop J-K

Volviendo al latch J-K, ahora con deteccién de flanco podemos
obtener un comportamiento mas adecuado:

Tabla de verdad:
Ahora lo podemos representar como:

, J K ck| Qry1 | Qrys
—H3 ' QF 1 0 1t 1 0
0 1 1t
> _ 0 0 11
K et Q™ 1 1 1t
X X 0

11
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Flip-Flop J-K

Volviendo al latch J-K, ahora con deteccién de flanco podemos
obtener un comportamiento mas adecuado:

Tabla de verdad:
Ahora lo podemos representar como:

, J K ck| Qry1 | Qrys
—H3 ' QF 1 0 1t 1 0
0 1 1t] o0 1
> _ 0 0 17 Qr Qr
K et Q™ 1 1 11| Qr | Qr
x x 0 Qr Qr

Ahora en el caso critico donde J, K = (1,1) la salida tiene un
estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck
11



Registros y memorias




Introduccién Latchs - Flip-flops Registros y memorias Conclusiones
00 0000000000 0®000000000 000

Registros

Ya vimos como un FF D puede almacenar un bit... jpero sélo
durante un clock!
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Registros

Ya vimos como un FF D puede almacenar un bit... jpero sélo
durante un clock!

e Debemos poder elegir con una entrada adicional de control
por cuanto tiempo queremos almacenar =- enable.
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Registros

Ya vimos como un FF D puede almacenar un bit... jpero sélo
durante un clock!

e Debemos poder elegir con una entrada adicional de control
por cuanto tiempo queremos almacenar =- enable.

iSencillo!:

D Q

Enable
clock
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Registro de N-bits

Podemos componer la solucién anterior para poder almacenar N

bits:
D1 (o]
—> Of—
D2 Q2
- o—
DN QN
> Of—
Enable —
ClOCK =
13
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Componentes de Tres Estados

Tabla de Verdad

Nocién Eléctrica Simbolo
AlB] C |
0

A—oB=Oo—c P At 1)1 1
_| 0| Hi-Z

Hi-Z significa “alta impedancia”, es decir, que tiene una resistencia
alta al pasaje de corriente. Como consecuencia de esto, podemos
considerar al pin C como desconectado del circuito.

14
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Componentes de Tres Estados

Dispositivo, T
Co
Dispositivo, T
¢
[}
L]
[}
Dispositivo, l
: 1

IMPORTANTE: Sélo deben ser usados a la salida de
componentes para permitirles conectarse a un medio compartido
(bus). 15
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Ejercicio 0

a) Disefiar un registro de 3 bits. El mismo debe contar con 3
entradas ep, ..., e para ingresar el dato a almacenar, 3 salidas
So, - -.,S2 para ver el dato almacenado y las sefiales de control
CLK, RESET y WRITEENABLE.

16



Introduccién Latchs - Flip-flops Registros y memorias Conclusiones
00 0000000000 00000800000 000

Ejercicio 0

a) Disefiar un registro de 3 bits. El mismo debe contar con 3
entradas ep, ..., e para ingresar el dato a almacenar, 3 salidas
So, - -.,S2 para ver el dato almacenado y las sefiales de control
CLK, RESET y WRITEENABLE.

b) Modificar el disefio anterior agregdndole componentes de 3
estados para que sélo cuando se active la sefal de control
ENABLEOUT muestre el dato almacenado.

16



Introduccién Latchs - Flip-flops Registros y memorias Conclusiones
00 0000000000 00000800000 000

Ejercicio 0

a) Disefiar un registro de 3 bits. El mismo debe contar con 3
entradas ep, ..., e para ingresar el dato a almacenar, 3 salidas
So, - -.,S2 para ver el dato almacenado y las sefiales de control
CLK, RESET y WRITEENABLE.

b) Modificar el disefio anterior agregdndole componentes de 3
estados para que sélo cuando se active la sefal de control
ENABLEOUT muestre el dato almacenado.

c) Modificar nuevamente el disefio para que e; y s; estén
conectadas entre si al mismo tiempo teniendo en lugar de 3

entradas y 3 salidas, 3 entrada-salidas
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Solucién - Ejercicio 0.a

e2o D ™ Q—los2
rese!6 [~
L
elo D ™ Qf—<fos1
»—
reset
e0o D * Q}-{os0
»—
clko _
Writ D resetQ [
Enable
registro3b
o
reset

17



Introduccién Latchs - Flip-flops Registros y memorias Conclusiones
[ele) 0000000000 00000008000 000

Solucién - Ejercicio 0.b

e2-e2 s2 —[>—*>sz
elore1 2 s1 1 os1
o
e0cle0 £ sO ~s0
Q
cIkO—-cIk_
vagiﬁfg"'f‘%"t’fe
reset
T reg3bHI-Z,
5 5
reset EnableOut

18



Introduccién

Latchs - Flip-flops
[e]e] 0000000000

Solucién - Ejercicio 0.c

Registros y memorias Conclusiones
00000000800

[e]e]e}

Iz

el

clko

el

Writeo

Enable

clk

Enable

reg3bHI-Z

s2

s1
sO

reset EnableOut

reg3b-10

oS 2
051

~s0

!

reset EnableOut
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Ejercicio 1

a) Realizar el esquema de interconexién de n registros como el
disefiado

20
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Ejercicio 1

a) Realizar el esquema de interconexién de n registros como el
disefiado

b) Dar una secuencia de valores de las sefiales de control para

que se copie el dato del R1 al RO
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Ejercicio 1

a) Realizar el esquema de interconexién de n registros como el
disefiado
b) Dar una secuencia de valores de las sefiales de control para

que se copie el dato del R1 al RO

BUS
b2 b1 b

reg3b-10 s2
RO s1
o nsite s0

reset_Enatleout
e

Enabi

reg3b-0

R1 s1
e SO

reset_Enableout
reset-10————
EnableOut-1

s2

s2

reg3b-10

Rn s1
eite O———— et s0

ot Ensieon 20

e |
-
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Ejercicio 1

a) Realizar el esquema de interconexién de n registros como el
disefiado
b) Dar una secuencia de valores de las sefiales de control para

que se copie el dato del R1 al RO

BUS
b2 b1 b

s2

reg3b-10

RO s1

oMt s0

roset_enabieou
]
Enabi
Sefiales de control:
s2

reg3b10 RO ‘ R1
R1s1 WriteEnable-0 | WriteEnable-1
eNite O——— e, s0 reset-0 reset-1

reset_Enableout EnableOut-0 EnableOut-1
S — | A
e —— | P

‘ Rn
WriteEnable-n
reset-n
EnableOut-n

s2

reg3b-10

Rn s1
eite O———— et s0

ot Ensieon 20

e |
-
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Ejercicio 1

a) Realizar el esquema de interconexién de n registros como el
disefiado

b) Dar una secuencia de valores de las sefiales de control para
que se copie el dato del R1 al RO

o5
reg3b-10 s2
RO s1 Sefiales de control:
R | RJ R
e reset_Enabioout WriteEnable-0 WriteEnable-1 WriteEnable-n
Ot reset-0 reset-1 reset-n
s2 EnableOut-0 EnableOut-1 EnableOut-n
”'3:’1 s Inician todas las sefiales en 0. Luego se sigue la siguiente secuencia:

e EnableOut-1 < 1

e SO

e reset_Enableout o WriteEnable-0 < 1
S | 11

o ..clk..

o WriteEnable-0 < 0

s2

reg3b-10

Rn s1
eite O———— et s0

ot Ensieon 20

e |
-

e EnableOut-1 < 0
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Memorias (intro)

Conceptualmente podemos pensar una memoria como M
posiciones de almacenamiento de N bits cada una.
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Memorias (intro)

Conceptualmente podemos pensar una memoria como M
posiciones de almacenamiento de N bits cada una.
Debemos poder seleccionar a cudl queremos acceder

N bits
Entrada / Salida _:{ Nbits
de datos - —5 Nbits le——
 S—
log2(M) =2
bits — i M
% = posiciones
Direccién de .
-
memoria - *—
- -
—=
wr_enable > | S rd enable
clk 21
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Conclusiones

e Estudiamos la realimentacidn en circuitos para mantener un
dato en el tiempo y vimos implementaciones de latchs
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propagacion de las sefiales

e Analizamos el uso de un clock para limitar la cantidad de
estados, controlar las transiciones y evitar carreras

22



Introduccién Latchs - Flip-flops Registros y memorias Conclusiones
0o 0000000000 00000000000 00

Conclusiones

e Estudiamos la realimentacidn en circuitos para mantener un

dato en el tiempo y vimos implementaciones de latchs

e Estudiamos los problemas asociados a los tiempos de

propagacion de las sefiales

e Analizamos el uso de un clock para limitar la cantidad de

estados, controlar las transiciones y evitar carreras

e Vimos algunas implementaciones de flip-flops, registros y

memorias

22
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La practica...

e Con lo visto hoy pueden realizar la parte A de la practica 2.

e Pueden usar el purpleLogisim evolution (Requiere Java 16 o

superior. Para ejecutarlo, teclear en una consola java -jar
logisim-evolution-3.8.0-all. jar desde la carpeta
donde se encuentra el archivo descargado.)

e El préoximo jueves deberiamos el primer taller de la materia,
el cual es obligatorio. Serd en los laboratorios del pabellén
Cero—+Infinito (ver cuales en el cronograma que esta en el
campus).

e Bibliografia recomendada: The Essentials of Computer
Organization and Architecture - Linda Null - Capitulo 3

23
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Clase de hoy

Hoy vamos a ver:

Definicién de arquitecturas.

El lenguaje ensamblador de RISC V.

Lenguaje maquina y programa almacenado en memoria.

Codificacién de instrucciones, compilacién y ensamblado.
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Introduccion

i Qué es la arquitectura, o mejor dicho, la arquitectura de un
procesador? La arquitectura de un procesador se refiere a aquello
con lo que podemos trabajar cuando escribimos un programa. Son
las instrucciones, los registros y la forma de acceder a memoria,
definiendo asi la estructura légica y comportamental del
procesador.
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Introduccion DE COMPUTACION

. Como interactuamos con la arquitectura de un procesador?
Escribiendo un programa en un lenguaje ensamblador, o sea, el
lenguaje que el procesador entiende.
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Introduccion

i Qué cosa no es la arquitectura de un procesador? La
implementacion fisica especifica del procesador que le permite
ejecutar estos programas. Puede haber varias implementaciones
distinas de una misma arquitectura pertenecientes a una o varias
empresas, para el programa, siempre y cuando respeten lo que la

arquitectura define, van a ser intercambiables.
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Introduccion

i Qué elementos expuestos a quién programa constituyen una
arquitectura?

e El conjunto de instrucciones.
e El conjunto de registros.

e La forma de acceder a la memoria.

i Qué es una instruccién, un registro o una memoria?



Programa de ejemplo en C

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}

Preguntémonos:
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Programa de ejemplo en C DE COMPUTACION
1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;
3 int i;
4 for (i = 0;i < largo;i++) {
5 acumulador = acumulador + a[i];
6 }
7 return acumulador;
8 |}
Preguntémonos:

e ;Qué comportamiento tiene este programa?

e ;Como interpreta el procesador la linea 57 jEsto se realiza en
una o varias instrucciones de lenguaje maquina?

e jCémo se representan y almacenan las variables i y
acumulador?

e ;Cémo se representan y almacenan las variables a y largo?

o ;CAmo se decide cudl es la prdxima instruccidn a ejecutar?



Programa de ejemplo en C

Al final de la clase vamos a poder responder todas estas preguntas,
en el contexto de una arquitectura en particular. A continuacién,
un pequeno adelanto.



Programa de ejemplo en ASM (RISC V)
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13
14
15
16
17

.section .text
.global
sumar_arreglo:

# a0 = int a[], al

I t0, 0

I tl, 0
ciclo: # Comienzo
bge tl, al, fin
slli  t2, tl1, 2
add t2, a0, t2
lw t2, 0(t2)
add t0, t0, t2
addi  tl, tl1, 1
j ciclo

fin:

mv a0, to

ret

sumar_arreglo

= int largo, t0 = acumulador, tl1
# acumulador = 0

# i =0

de ciclo

# Si i >= largo, sale del ciclo
# Multiplica i por 4 (1 << 2 = 4)
# Actualiza la dir. de memoria

# De—referencia la dir,

# Agrega el valor al acumulador
# Incrementa el iterador

# Vuelve a comenzar el ciclo

Mueve t0 (acumulador) a a0

F* F*

Devuelve valor por a0
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Lenguajes de alto y bajo nivel

Al programar solemos utilizar lenguajes de alto nivel. Estos
lenguajes se expresan en un dominio independiente de la
arquitectura del procesador donde se vaya a correr el programa.
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Lenguajes de alto y bajo nivel

Proveen un nivel de abstraccién basado en:
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Lenguajes de alto y bajo nivel

Proveen un nivel de abstraccién basado en:

e Variables que preservan valores (int a, b = 3;).

e Estructuras de control que permiten modificar la ejecucién
secuencial del programa (if, switch, for).

e Un mecanismo que nos permite realizar una invocacién o
llamada a una funcién desde cualquier punto del programa,

pasando y recibiendo parametros (int foo(int bar)).
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Lenguajes de alto y bajo nivel

Los procesadores pueden ejecutar instrucciones escritas en un

lenguaje en particular, que conoce su arquitectura y se expresa
estrictamente en términos de sus componentes (instrucciones,
registros y memoria). Este es el lenguaje ensamblador de esta

arquitectura ()RISC V en nuestro caso).
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Lenguajes de alto y bajo nivel

Cada arquitectura cuenta con un lenguaje ensamblador particular,
en nuestro caso cuando decimos lenguaje ensamblador, nos
estamos refiriendo al lenguaje ensamblador de RISC V.

Los lenguajes ensambladores son, en realidad, una familia de
lenguajes de bajo nivel.

13



DEPARTAMENTO
DE COMPUTACION

Lenguajes de alto y bajo nivel

Los procesadores implementan una arquitectura y necesitan ser
acompaiados por programas de compilado, ensamblado y enlazado
que permiten escribir cédigo en alto nivel y conseguir que éste se
traduzca, en una serie de pasos, en cédigo binario ejecutable. En
caso contrario solamente podriamos programar en lenguaje

ensamblador.

14



Lenguajes de alto y bajo nivel

Cédigo de alto nivel
(Compilador)
¥
Cédigo de bajo nivel
(Ensamblador)
¥
Cédigo objeto Cédigo objeto en archivos
(Enlazador) Bibliotecas

v

Cddigo binario ejecutable

ii5)



Lenguajes de alto y bajo nivel

suma_arreglo.c

(Asi lo escribimos en el editor)
suma_arreglo.S
(Primera traduccién a ensamblador))

v

suma_arreglo.o
. L . «——— mem.o
(Segunda traduccién a cédigo objeto)

Vv

suma_arreglo.bin
(Tercera traduccién, listo para ejecutar)

16
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La arquitectura RISC V es una arquitectura abierta, modular, de
uso industrial y que estd ganando rapidamente adopcién en varios
dominios estratégicos.

17



Instrucciones

Una suma en el lenguaje ensamblador de RISC V se escribe de la
siguiente manera:

\ C \ Rlscv\

‘a:b—kc;‘adda,b,c‘

18



DEPARTAMENTO
DE COMPUTACION

Instrucciones

Una suma en el lenguaje ensamblador de RISC V se escribe de la

siguiente manera:

\ C \ Rlscv\

‘a:b—kc;‘adda,b,c‘

La primera parte, add, recibe el nombre de mnemonico, e indica el
tipo de operacién que queremos realizar, en este caso una suma.
Los operandos b y c son los operandos de fuente y a el operando
destino ya que sera el que almacene el valor del resultado de la
operacion.

18



Instrucciones compuestas

Ke | RISC V|
// operaciones compuestas | add t, b, ¢ # t =b + ¢
a=b+c—4d; sub a, t, d#a=1t —d

19



Instrucciones compuestas

RISC V|

Ke

add t, b, =b + c

// operaciones compuestas c # t
a=b+c—4d; sub a, t, d#a=1t —d

El lenguaje ensamblador no permite la composicién de operaciones
del modo en que lo hace, por ejemplo, C, por lo que debemos
descomponer la operaciones en instrucciones atémicas (una sumay

una resta).
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DEPARTAMENTO
DE COMPUTACION

Registros

La operaciones légico aritméticas modifican el estado del
procesador seglin su semantica, dichas modificaciones deben
realizarse rdpidamente debido a que constituyen el grueso del
coémputo que ocurre en nuestros procesadores. Es por esto que los
operandos de fuente y destino son registros y no direcciones de
memoria.

Si queremos realizar operaciones aritméticas o ldgicas con datos
que se encuentran en memoria, debemos primero mover esos datos

de la memoria principal a los registros.

20



DEPARTAMENTO
DE COMPUTACION

Register file

RISC V cuenta con 32 registros que suelen implementarse como un
arreglo de memoria estatica de 32 bits con varios puertos. A este
arreglo se lo suele referir como banco de registros o archivo de
registros (register file).

CI‘_K |
—;5; Al WES RD1 75
75; A2 RD2 HS?
5] A% pegist
egister
2] WO% File
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Nombres de los registros

Los registros pueden nombrarse por su indice, desde x0 a x31 o
segln su uso habitual, que indica el propdsito que suele cumplir el
registro en el funcionamiento de un programa.

22



DEPARTAMENTO
DE COMPUTACION

Nombres de los registros

Los registros pueden nombrarse por su indice, desde x0 a x31 o
segln su uso habitual, que indica el propdsito que suele cumplir el
registro en el funcionamiento de un programa.

o El registro zero (x0) almacena siempre el valor 0, y no
puede ser escrito. Cualquier operacién que lo tenga como
operando de destino, descarta la escritura del mismo.
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DEPARTAMENTO
DE COMPUTACION

Nombres de los registros

Los registros pueden nombrarse por su indice, desde x0 a x31 o
segln su uso habitual, que indica el propdsito que suele cumplir el

registro en el funcionamiento de un programa.

o El registro zero (x0) almacena siempre el valor 0, y no
puede ser escrito. Cualquier operacién que lo tenga como
operando de destino, descarta la escritura del mismo.

e Los registros sO a s11 y los t0 a t6 se utilizan para

almacenar variables.

22



DEPARTAMENTO
DE COMPUTACION

Nombres de los registros

Los registros pueden nombrarse por su indice, desde x0 a x31 o
segln su uso habitual, que indica el propdsito que suele cumplir el

registro en el funcionamiento de un programa.

o El registro zero (x0) almacena siempre el valor 0, y no
puede ser escrito. Cualquier operacién que lo tenga como
operando de destino, descarta la escritura del mismo.

e Los registros sO a s11 y los t0 a t6 se utilizan para
almacenar variables.

e ray de a0 a a7 tienen usos relacionados con las llamadas a

funcién.

22



DEPARTAMENTO

Nombres de los registros segtin su uso DE COMPUTACION

31 0

x0 / zero Alambrado a cero
xl / 1a Direccion de retorno
x2 / sp Stack pointer
x3 / gp Global pointer
x4 / tp Thread pointer
x5 / t0 Temporal
x6 / t1 Temporal
x7 / 12 Temporal

x8 / s0 / fp Saved register, frame pointer
x9 / s1 Saved register

x10 / a0 de funcién, valor de retorno
x11 / al A de funcién, valor de retorno
x12 / a2 A de funcién
x13 / a3 A de funcién
x14 / ad A de funcién
x15 / ab A de funcién
x16 / a6 A de funcién
x17 / a7 de funcién
x18 / s2 Saved register

x19 / s3 Saved register

x20 / s4 Saved register

x21 / s5 Saved register

x22 / s6 Saved register

x23 / s7 Saved register

x24 / s8 Saved register

x25 / s9 Saved register

x26 / s10 Saved register

x27 / sl11 Saved register

x28 / t3 Temporal

x29 / t4 Temporal

x30 / t5 Temporal

x31 / t6 Temporal

32
31 0
»e ]

3 23



DEPARTAMENTO
DE COMPUTACION

Registros y variables

En el lenguaje ensamblador no nos referimos a un conjunto de
variables no acotadas y cuyo nombre podemos definir segtin
convenga para la interpretacién del programa, sino que contamos
con un conjunto fijo de 32 elementos con los que operar.

24



S DEPARTAMENTO
<

Registros y variables DE COMPUTACION

Por eso, cuando traducimos un programa de un lenguaje de alto
nivel a ensamblador debemos decidir en qué registros almacenar los
valores de nuestras variables.

25



Instrucciones compuestas sobre registros

DEPARTAMENTO

C RISC V
# s0 = a, s1 =b
// operaciones compuestas | # s2 =c, s3 =d, t0 =t
a=b+ c—d; add t0, s1, s2 # t =Db + c
sub sO, t0, s3 # a t —d

26



Instrucciones compuestas sobre registros

C RISC V
# s0 = a, s1 =b

// operaciones compuestas | # s2 =c, s3 =d, t0 =t

a=b+ c—d; add t0, s1, s2 # t =Db + c
sub sO, t0, s3 #a =1t —d

Volvemos al ejemplo anterior utilizando los nombres reales de los

registros sobre los que podemos operar.
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S DEPARTAMENTO
<

Valores inmediatos DE COMPUTACION

Las instrucciones de lenguaje ensamblador pueden tener valores
constantes como operandos, suelen llamarse valores inmediatos ya
que se encuentran disponibles en la misma instruccién (no hace
falta recuperar su valor a partir de un registro o desde la memoria).

27



DEPARTAMENTO

Valores inmediatos

El valor puede escribirse en decimal, hexadecimal (prefijo 0x) o
binario (prefijo Ob). Los valores inmediatos son de 12 bits y se
extiende su signo a 32 bits antes de operar.

28



DEPARTAMENTO

Operando con constantes

C RISC V

#s0=a, sl=b
addi sO, sO, 4 # a =a + 4
addi s1, sO, =12 # b = a — 12

a = a + 4;
b =a —12;

29



DEPARTAMENTO

Operando con constantes

C RISC V

#s0=a, sl=b
addi sO, sO, 4 # a =a + 4
addi s1, sO, =12 # b = a — 12

a =a + 4;
b =a —12;

Podemos definir constantes positivas y negativas como operandos
utilizando la operacién addi (add inmediate).
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DEPARTAMENTO

Asignando constantes a registros

C RISC V
0 #s4=i, sb=x, sb=y
i .
' addi s4, zero, 0 # i =0
x = 2032; . .
_ _7s. addi sb, zero, 2032 # i =0
4 ’ addi s6, zero, —78 # i = 0
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Asignando constantes a registros

DEPARTAMENTO

C RISC V
. 0 #s4=i, sb=x, sb=y
i = 0;
' addi s4, zero, 0 # i =0
x = 2032; . .
_ _7s. addi sb, zero, 2032 # i =0
v ’ addi s6, zero, —78 # i = 0

Podemos definir constantes positivas y negativas como operandos.
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Valores inmediatos de 32 bits

Ke | RISCV |

T lui s2, OxABCDE #s2=0xABCDE000

addi s2, s2, 0x123 #s2=0xABCDE123
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Valores inmediatos de 32 bits

Ke | RISCV |

T lui s2, OxABCDE #s2=0xABCDE00O

addi s2, s2, 0x123 #s2=0xABCDE123

Como los valores inmediatos son de 12 bits y se los extiende
respetando el signo a 32 bits cuando realizamos una operacién,
cargar una constante de 32 bits requiere que hagamos dos
operaciones.
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Valores inmediatos de 32 bits

Ke | RISCV |

0% & — GAEPELS lui s2, OxABCDE #s2=0xABCDE00O

addi s2, s2, 0x123 #s2=0xABCDE123

Primero cargamos los veinte bits mds altos con la instruccidn
lui(load upper inmediate) y luego los 12 bits mas bajos con un
addi como veniamos haciendo.
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Valores inmediatos de 32 bits

Ke | RISC V|

lui s2, OxFEEDB #s2=0xFEEDBO000

int a — OxFEEDA9ST;
ntoe = addi s2, s2, —1657 #s2—0xFEEDAQS7
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DEPARTAMENTO

Valores inmediatos de 32 bits

Ke | RISC V|

lui s2, OxFEEDB #s2=0xFEEDBO000

int a — OxFEEDA9ST;
ntoe = addi s2, s2, —1657 #s2—0xFEEDAQS7

Si la parte baja se expresa como un ndmero negativo (bit mas alto
en 1), al extender el signo va a cargar con unos la parte alta. Por
eso tenemos que tener esto en cuenta.
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DEPARTAMENTO

Valores inmediatos de 32 bits

\ C \ Rlscv\

lui s2, OxFEEDB #s2=0xFEEDBO000

int a = OxFEEDAOST; .
G & = (0 addi s2, s2, —1657 #s2—0xFEEDA98?

La parte alta con todos unos equivale a un menos uno en
complemento a dos, por lo cual, para compensar el efecto de la
extensién del signo en la suma, se incrementa en uno la parte alta
que vamos a cargar. En el ejemplo hacemos 1ui s2, OxFEEDB en
lugar de 1ui s2, OxFEEDA.
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DEPARTAMENTO
DE COMPUTACION

Memoria

El tipo de operando que resta presentar es el de memoria. La
memoria se estructura y accede como si fuera un arreglo de
elementos de 32 bits (4 bytes).

El acceso a memoria es significativamente mas lento que el acceso
a registros pero nos permite acceder a mucha mas informacién que

si tuviésemos que operar solamente con registros.
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DEPARTAMENTO

Direcciones de memoria

RISC V permite acceder a la memoria con indices (direcciones) de
32 bits, o sea 4.294.967.296 indices posibles.

Pero cabe notar que el indice apunta a un byte en particular, o sea,
a uno de los cuatro bytes de la palabra, de modo que entre una
palabra de 32 bits y otra, los indices avanzan en cuatro unidades.
Podemos indicar que la lectura o escritura se hara a partir de un
byte en particular.
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S DEPARTAMENTO
<

Accesos a memoria (direcciones) DE COMPUTACION

Byte Address Word Address Data Word Number
13 (12|11 |10 00000010 CD|1 9|2 6|5 B| Word 4
E D C 0000000C 4 0|F 3|0 7|8 8| Word 3
B| A |9 8 00000008 0 1l|EE[2 8|4 2| Word 2
7 6 5 4 00000004 F2/F1l|aclo 7| Word1
3 2 1 0 00000000 A B|CD|E F|7 8 Word0
MSB LSB -
(a) (b) width =4 bytes

A la izquierda (a), vemos los indices de memoria (byte address)
representados de derecha a izquierda, donde a la derecha vemos el
byte menos significativo (LSB) y a la derecha el byte mas
significativo de la palabra (MSB). La direccién de palabra (word
address) corresponde al indice del byte menos significativo de ésta.
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DEPARTAMENTO
DE COMPUTACION

Accesos a memoria (datos)

Byte Address Word Address Data Word Number
13 (12|11 | 10 00000010 CD|1 9lA 6|5 B| Word 4
F E D C 0000000C 4 0|F 3|0 7|8 8| Word 3
B A 9 8 00000008 01lEE|2 8|4 2| Word 2
7 6 5 4 00000004 F2|F1la 0 7( Word 1
3 2 1 0 00000000 A B|[CD|E F|7 8 Word0
MSB LSB -
(a) (b) width = 4 bytes

A la derecha (b) vemos los datos ordenados segtin palabras de 32
bits (4 bytes) y el nimero de palabra (word number). La relacién
entre nimero de palabra y direccién de palabra es:

word address * 4 = word number
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DEPARTAMENTO
DE COMPUTACION

Leyendo y escribiendo datos

Para operar con la memoria utilizamos las instrucciones 1w (load
word) para leer una palabra de memoria en un registro y sw (store
word) para escribir una palabra desde un registro a la memoria. Las

direcciones se definen como:
direccién = base + desplazamiento

Donde la base serd el valor de un registro y el desplazamiento una

constante con signo de 12 bits.
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S DEPARTAMENTO
<

Leyendo un arreglo DE COMPUTACION
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DEPARTAMENTO

Leyendo un arreglo

Ke | RISCV |

#s7 = a, s3 = mem

int a = mem[2]; e, s7. 8(s3)

Si suponemos que los datos del arreglo mem son palabras de 4
bytes, y que la posicién de memoria en la que comienza el arreglo
estd almacenada en s3, la forma de leer el tercer dato del arreglo
(recordemos que el primer dato se encuentra en mem[0]) es
indicando s3 como la base y 8 como el desplazamiento, ya que la
memoria se accede con indices que apuntan de a byte y cada dato
tiene 4 bytes (4 * 2 = 8).
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DEPARTAMENTO

Escribiendo en un arreglo

C RISC V \

#s3 = mem
mem|[5] = 33; addi t3, zero, 33
sw, t3, 20(s3)
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Escribiendo en un arreglo

C RISC V \

#s3 = mem
mem|[5] = 33; addi t3, zero, 33
sw, t3, 20(s3)

Si suponemos que los datos del arreglo mem son palabras de 4
bytes, y que la posicién de memoria en la que comienza el arreglo
estd almacenada en s3, la forma de escribir el quinto dato del
arreglo (recordemos que el primer dato se encuentra en mem[0]) es
indicando s3 como la base y 20 como el desplazamiento ya que la
memoria se accede con indices que apuntan de a byte y cada dato
tiene 4 bytes (4 * 5 = 20).
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Repaso de lenguaje ensamblador

Hasta este punto se presentd lo siguiente:
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Repaso de lenguaje ensamblador

Hasta este punto se presentd lo siguiente:

e Definicion de arquitectura.
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Repaso de lenguaje ensamblador

Hasta este punto se presentd lo siguiente:

e Definicion de arquitectura.

e Definicion de lenguajes de alto y bajo nivel.
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DEPARTAMENTO

Repaso de lenguaje ensamblador

Hasta este punto se presentd lo siguiente:

e Definicion de arquitectura.
e Definicion de lenguajes de alto y bajo nivel.

e Lenguaje ensamblador de RISCV.
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Repaso de lenguaje ensamblador

Hasta este punto se presentd lo siguiente:

e Definicion de arquitectura.
e Definicion de lenguajes de alto y bajo nivel.
e Lenguaje ensamblador de RISCV.

e Operaciones, operandos, uso de registros, constantes y

memoria.

42



S DEPARTAMENTO
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Programa de ejemplo en C DE COMPUTACION

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}
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DEPARTAMENTO

Programa de ejemplo en C DE COMPUTACIO

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}

i Qué podemos entender de la traduccién que presentamos antes?
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Programa de ejemplo en ASM (RISC V)

DEPARTAMENTO

1 | .section .text

2 | .global sumar_arreglo

3 |sumar_arreglo:

4 |# a0 = int a[], al = int largo, t0 = acumulador, tl
=

5 | Ii t0, 0 # acumulador = 0

6 | li tl, 0 # i =0

7 | ciclo: # Comienzo de ciclo

8 | bge tl, al, fin # Si i >= largo, sale del ciclo

9 |slli t2, t1, 2 # Multiplica i por 4 (1 << 2 = 4)

10 | add t2, a0, t2 # Actualiza la dir. de memoria

11 | lw t2, 0(t2) # De—referencia la dir,

12 | add t0, t0, t2 # Agrega el valor al acumulador

13 [addi t1, tl1, 1 # Incrementa el iterador

14 |j ciclo # Vuelve a comenzar el ciclo

15 | fin:

16 |mv a0, to # Mueve t0 (acumulador) a a0

17 | ret # Devuelve valor por a0 44
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S DEPARTAMENTO
<

Programas almacenados en memoria DE COMPUTACION

Uno de los principios fundamentales de los procesadores es el de
programa almacenado en memoria, eso significa que las
instrucciones que describen el comportamiento de un programa se
almacenan (siguiendo un formato particular) en la memoria del
procesador, la misma que se accede en las operaciones de lectura y

escritura (sw,1w).
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DEPARTAMENTO
DE COMPUTACION

Tamano de la instruccion

Cada instruccién ocupa 32 bits (una palabra), por lo cual sus
direcciones se incrementan en miltiplos de 4, recordemos que la
arquitectura RISC V permite acceder a la memoria con direcciones
que refieren al byte menos significativo a partir del cual leer o
escribir la palabra.
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DEPARTAMENTO

h-decode-execute

Direccidon | Instruccion almacenada

0x538 | addi sl1, s2, 3
0x53C | lw t2, 8(sl)
0x540 | sw s3, 3(t6)
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S DEPARTAMENTO
<

Fetch-decode-execute DE COMPUTACION

Direccidon | Instruccion almacenada

0x538 | addi sl1, s2, 3
0x53C | lw t2, 8(sl)
0x540 | sw s3, 3(t6)

El procesador ejecuta el programa almacenando la posicién de
memoria de la instruccién que se estd ejecutando en un registro de
32 bits conocido como el program counter (PC). Va a cargar el
contenido de la instruccién de memoria (fetch), ejecutarla
(execute) y luego incrementar el PC en 4 posiciones para repetir el
ciclo. Al comenzar este programa se carga la instrucciéon de la
posicién 0x538, se la ejecuta, se incrementa el PC a 0x53C y se

vuelve a repetir el ciclo.
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DEPARTAMENTO
DE COMPUTACION

Fetch-decode-execute

A esto lo llamamos ciclo de fetch decode execute o ciclo de
instruccién. Ya que al ejecutar un programa se carga una
instruccién de memoria (fetch), se la decodifica para configurar el
procesador segtin su tipo (decode) y luego se actualiza el estado

del procesador (registros y memoria), de acuerdo al a seméntica de

la instruccién (execute).
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DE COMPUTACION

=

Program counter

En la seccién de control de ejecucién condicional veremos la
importancia que tiene el valor del program counter.
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Instrucciones légicas

El set de instrucciones de RISC V cuenta con instrucciones ldgicas
como la conjuncién (and), disyuncién (or) y la disyuncién
excluyente (xor).
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S DEPARTAMENTO
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Instrucciones légicas DE COMPUTACION

En el diagrama vemos los valores de los registros s1 y s2,
representados en formato binario, y luego los resultados de aplicar
las operaciones légicas con distintos operandos de destino
utilizando los anteriores como fuente.

Source registers
s1 | 0100 0110 | 1010 0001 | 1111 0001 | 1011 0111
s2 [ 11111111 | 1111 1111 | 0000 0000 | 0000 0000

Assembly code Result
and s3, sl, s2 =3 [01000110| 1010 0001 | 0000 0000 | 0000 0000
or =4, g1, =2 =4 [11111111 1111 1111|1111 0001 | 1011 0111
xor s5, sl, s2 &5 (101110010101 1110|1111 0001 | 1011 0111
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DE COMPUTACION

=

Instrucciones légicas

Algunos usos tipicos de las instrucciones légicas son:
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Instrucciones légicas

Algunos usos tipicos de las instrucciones légicas son:

e or: Combinar dos registros que sélo tienen asignada la parte
alta y baja respectivamente, un or entre OxFEEDOOOO y
0x0000FOCA resulta en OxFEEDFOCA.
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DEPARTAMENTO
MPUTACIO

Instrucciones légicas

Algunos usos tipicos de las instrucciones légicas son:

e or: Combinar dos registros que sélo tienen asignada la parte
alta y baja respectivamente, un or entre OxFEEDOOOO y
0x0000FOCA resulta en OxFEEDFOCA.

e and: Nos permite limpiar partes de un registro, si quisiéramos
preservar solamente la parte baja de 0xBABACOCO podemos
hacer un and con 0xO000FFFF consiguiendo 0x0000COCO.
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DEPARTAMENTO
UTACIO

Instrucciones légicas

Algunos usos tipicos de las instrucciones légicas son:

e or: Combinar dos registros que sélo tienen asignada la parte
alta y baja respectivamente, un or entre OxFEEDOOOO y
0x0000FOCA resulta en OxFEEDFOCA.

e and: Nos permite limpiar partes de un registro, si quisiéramos
preservar solamente la parte baja de 0xBABACOCO podemos
hacer un and con 0xO000FFFF consiguiendo 0x0000COCO.

e xor: Conseguir la negacién ldgica al aplicar la operacién a -1,
recordemos que -1 se codifica con todos 1, por lo que xori
sl, s2, -1 va a aplicar un xor entre s2 y -1 que se codifica
como OxFFF en 12 bits y se extiende a OxFFFFFFFF al
ejecutar, consiguiendo un xor contra todos unos, que
efectivamente niega el valor.
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Instrucciones de desplazamiento

Las instrucciones de desplazamiento permiten desplazar un valor a
izquierda o derecha en una cantidad definida por el segundo
operando fuente, si este segundo operando se trata de un
inmediato, lo codifica en 5 bits (complemento a dos extendiendo el
signo a 32 bits).
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Instrucciones de desplazamiento

Hay tres operaciones posibles:
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Instrucciones de desplazamiento

Hay tres operaciones posibles:

e s11 (shift left logical): desplaza a izquierda el valor tantas
veces como especifique el segundo operando fuente,
completando con ceros a derecha.

54



Instrucciones de desplazamiento

Hay tres operaciones posibles:

e s11 (shift left logical): desplaza a izquierda el valor tantas
veces como especifique el segundo operando fuente,
completando con ceros a derecha.

e srl (shift right logical): desplaza a derecha el valor tantas
veces como especifique el segundo operando fuente,

completando con ceros a izquierda.
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DEPARTAMENTO

Instrucciones de desplazamiento

Hay tres operaciones posibles:

e s11 (shift left logical): desplaza a izquierda el valor tantas
veces como especifique el segundo operando fuente,
completando con ceros a derecha.

e srl (shift right logical): desplaza a derecha el valor tantas
veces como especifique el segundo operando fuente,
completando con ceros a izquierda.

e sra (shift right arithmetic): desplaza a derecha el valor tantas
veces como especifique el segundo operando fuente,
completando con el valor del bit mas significativo a izquierda
(preserva signo).
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DEPARTAMENTO

Instrucciones de desplazamiento

Hay tres operaciones posibles:

e s11 (shift left logical): desplaza a izquierda el valor tantas
veces como especifique el segundo operando fuente,
completando con ceros a derecha.

e srl (shift right logical): desplaza a derecha el valor tantas
veces como especifique el segundo operando fuente,
completando con ceros a izquierda.

e sra (shift right arithmetic): desplaza a derecha el valor tantas
veces como especifique el segundo operando fuente,
completando con el valor del bit mas significativo a izquierda
(preserva signo).

Existen versiones donde el segundo operando fuente es un
inmediato (s11i, srli, srai).
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En el diagrama vemos los valores del registro s5, representado en

formato binario, y luego los resultados de aplicar las operaciones de
desplazamiento.

Source register
s5 [ 11111111 | 0001 1100 | 0001 0000 | 1110 0111

Assembly code Result
sl1li t0, s5, 7 0 [ 10001110 | 0000 1000 | 01110011 | 1000 0000
srli s1, s5, 17 s1 |0000 0000 | 0000 0000| 011111111000 1110
srai t2, s5, 3 2 |11111111| 11100011 | 1000 0010 | 0001 1100
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Consiguiendo un byte en particular

Utilizando desplazamientos y mascaras podemos acceder a un byte
en particular dentro de una palabra, si tenemos el valor
O0xABCDEFO0O0 en el registro s1 y queremos conseguir el segundo
byte (desde el menos significativo) y almacenarlo en s2 podemos
hacer lo siguiente:

1 |srli t0O, s1, 8
2 |andi s2, t0, OxFF

La primera instruccion desplaza el valor un byte a la derecha y la
segunda preserva solamente el byte menos significativo, que luego

almacena en s2.
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Control del flujo de ejecucién DE COMPUTACION

Para poder ejecutar programas que no tengan un flujo secuencial
(donde todas las instrucciones se suceden en orden), necesitamos
poder saltear instrucciones en nuestro programa o volver a una
instruccién anterior, como suele suceder en los lenguajes de alto

nivel con las estructuras de if, while, for, case.
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Control del flujo de ejecucién

El mecanismo para conseguir esto en el lenguaje ensamblador de
RISC V es modificar el valor del registro PC (program counter) de
modo que la préxima instruccidén no sea la siguiente en la memoria

sino la que se defina en una instrucciéon especifica.
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Instrucciones de control del flujo de ejecucién

Las instrucciones de control de flujo van a comparar el valor de los
dos primeros operandos, y en funcién del resultado van reemplazar
el valor del PC con el del tercer operando. Las instrucciones son:
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Instrucciones de control del flujo de ejecucién

Las instrucciones de control de flujo van a comparar el valor de los
dos primeros operandos, y en funcién del resultado van reemplazar
el valor del PC con el del tercer operando. Las instrucciones son:

e beq(branch if equal): que reemplaza el valor del PC si los dos
primeros operandos son iguales.
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Instrucciones de control del flujo de ejecucién

Las instrucciones de control de flujo van a comparar el valor de los
dos primeros operandos, y en funcién del resultado van reemplazar
el valor del PC con el del tercer operando. Las instrucciones son:

e beq(branch if equal): que reemplaza el valor del PC si los dos
primeros operandos son iguales.

e bne(branch if not equal): que reemplaza el valor del PC si los
dos primeros operandos son distintos.
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Instrucciones de control del flujo de ejecucién

Las instrucciones de control de flujo van a comparar el valor de los
dos primeros operandos, y en funcién del resultado van reemplazar
el valor del PC con el del tercer operando. Las instrucciones son:

e beq(branch if equal): que reemplaza el valor del PC si los dos
primeros operandos son iguales.

e bne(branch if not equal): que reemplaza el valor del PC si los
dos primeros operandos son distintos.

e blt(branch if less than): que reemplaza el valor del PC si el
primer operando es menor que el segundo.
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Instrucciones de control del flujo de ejecucién

Las instrucciones de control de flujo van a comparar el valor de los
dos primeros operandos, y en funcién del resultado van reemplazar
el valor del PC con el del tercer operando. Las instrucciones son:

e beq(branch if equal): que reemplaza el valor del PC si los dos
primeros operandos son iguales.

e bne(branch if not equal): que reemplaza el valor del PC si los
dos primeros operandos son distintos.

e blt(branch if less than): que reemplaza el valor del PC si el
primer operando es menor que el segundo.

e bge(branch if greater than or equal): que reemplaza el valor
del PC si el primer operando es mayor o igual que el segundo.
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Instrucciones de control sobre operandos sin signo

Existen variantes que interpretan a los operandos como enteros sin
signo a la hora de realizar las comparaciones. Sus mneménicos son
bltu, bgeu.
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Ejemplo y etiquetas

addi sO, zero, 4
addi s1, zero, 1
slli s1, s1, 2

beq s0, sl, target
addi sl1, sl1, 1

sub sl1, sl, sO
target:

add s1, sl1, sO

0 ~N o O W N
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DEPARTAMENTO

Ejemplo y etiquetas

addi sO, zero, 4
addi s1, zero, 1
slli s1, s1, 2

beq s0, sl, target
addi sl1, sl1, 1

sub sl1, sl, sO
target:

add s1, sl1, sO

0 ~N o O W N

Este ejemplo carga un 4 en sO y un 1 en s1 (addi), luego desplaza
a s1 dos posiciones a la izquierda (s11i), lo cual equivale a
multiplicar por 4 y compara sin ambos registros son iguales (beq).
El dltimo operando es de tipo etiqueta.
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Ejemplo y etiquetas DE COMPUTACION

addi sO, zero, 4
addi sl1, zero, 1
slli s1, sl1, 2

beq s0, sl, target
addi sl1, sl1, 1

sub s1, sl1, sO
target:

add s1, sl1, sO

0 ~N o O W N

Las etiquetas se definen como nombre: donde nombre es la
referencia que podemos usar en otras instrucciones y sera
interpretada como la direccién de memoria donde se almacena la
instruccién inmediatamente siguiente a su definicion.
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Ejemplo y etiquetas

1
2
3
4
5
6
7
8

addi sO, zero, 4

addi sl, zero, 1

slli s1, s1, 2

beq s0, sl, target

addi s1, s1, 1

sub s1, sl1, sO
target:

add sl1, sl1, sO #dir: 0xB400
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Ejemplo y etiquetas

addi sO, zero, 4

addi sl, zero, 1

slli s1, s1, 2

beq s0, sl, target

addi s1, s1, 1

sub s1, sl1, sO

target:

add sl1, sl1, sO #dir: 0xB400

O N O OB W N

Si la instruccién add s1, s1, sO se encuentra almacenada en la
direccién 0xB400, al evaluar la condicién en beq s0, sl, target
y determinar que los valores de los operandos son iguales, el PC
serd actualizado con el valor 0xB400 y la préxima instruccién a
ejecutar serd add s1, s1, sO en lugar de addi s1, si1, 1.
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Saltos incondicionales

En los casos anteriores el valor del PC se actualizaba solamente
cuando se cumplia una condicién luego de comparar el valor de dos
operandos. Para realizar una actualizacién (salto) incondicional del

valor del PC se utilizan las instrucciones:
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DEPARTAMENTO
DE COMPUTACION

Saltos incondicionales

En los casos anteriores el valor del PC se actualizaba solamente
cuando se cumplia una condicién luego de comparar el valor de dos
operandos. Para realizar una actualizacién (salto) incondicional del

valor del PC se utilizan las instrucciones:

e j (jump): que simplemente actualiza el valor del PC con el del
operando provisto (inmediato de 20 bits extendidos en signo a

32).
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Saltos incondicionales

En los casos anteriores el valor del PC se actualizaba solamente
cuando se cumplia una condicién luego de comparar el valor de dos
operandos. Para realizar una actualizacién (salto) incondicional del

valor del PC se utilizan las instrucciones:

e j (jump): que simplemente actualiza el valor del PC con el del
operando provisto (inmediato de 20 bits extendidos en signo a
32).

e jal (jump and link): que almacena el valor actual del PC en el
registro indicado en el primer operando y actualiza el valor del
PC con el del segundo operando (inmediato de 20 bits
extendidos en signo a 32).
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Saltos incondicionales DE COMPUTACION

j target

srai sl, sl, 2
addi sl1, sl1, 1
sub s1, sl1, sO
target:

add sl1, sl1, sO

S OB W N
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Saltos incondicionales

j target

srai sl, sl1, 2
addi sl1, sl1, 1
sub sl1, sl, sO
target:

add s1, sl, sO

S OB W N

En este ejemplo la segunda, tercera y cuarta instruccién no se
ejecutan, ya que el salto incondicional de la primera instruccién

continua la ejecucién en add si1, s1, sO.
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Escribiendo un loop

DEPARTAMENTO

C RISC V
#s0=pow, sl=x
// calcula el valor de x addi sO, zero, 1
// tal que 2 a la x es 128 | add sl, zero, zero
int pow = 1: #t0=128
int x = 0; addi t0, zero, 128
while:
while (pow = 128){ beq sO, t0O, fin
pow = pow * 2; slli sO, sO, 1 #pow=pow*2
x = x + 1; addi sl1, sl1, 1 #+=1
} j while
fin:
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DEPARTAMENTO

Escribiendo un loop

C RISC V
#s0=pow, sl=x
// calcula el valor de x addi sO, zero, 1
// tal que 2 a la x es 128 | add sl, zero, zero
int pow = 1: #t0=128
int x = 0; addi t0, zero, 128
while:
while (pow = 128){ beq sO, t0O, fin
pow = pow * 2; slli sO, sO, 1 #pow=pow*2
x = x + 1; addi sl1, sl1, 1 #+=1
} j while
fin:

Esta traduccién indica como podemos implementar un ciclo while

con un salto condicional y uno incondicional.
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Lenguaje de maquina




DEPARTAMENTO
DE COMPUTACION

Lenguaje de maquina

El lenguaje ensamblador es un lenguaje de bajo nivel pero los
programas escritos en este lenguaje no pueden ser ejecutados por
el procesador, es por eso que el cédigo fuente debe ser ensamblado
para producir el archivo binario cuyos contenidos pueden ser
cargados en memoria y ejecutados.
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Instrucciones R

Las instrucciones de tipo R utilizan dos registros como operandos
fuente (rs1, rs2)y uno como operando destino rd. El campo op
junto con funct7 y funct3 determinan el tipo de instruccién

codificada.
R-Type
31:25 24:20 19:15 14:12 11:7 60
funct?7 | rs2 | rs1 [funct3 rd op
7 bits 5bits 5bits 3 bits 5 bits 7 bits

68



S DEPARTAMENTO
<

Instrucciones R, ejemplos DE COMPUTACION

Assembly Field Values
funct?  rs2 rs1 funct3 rd op
e ms ol o J20]19] o [ 18 | s

sub £0, t1, t2 32 7 | 6 0 5 51
sub x5, x6, x7
7 bits Shits 5 bits 3 bits 5 bits 7 bits
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Instrucciones |

Las instrucciones de tipo I utilizan un registros como operando
fuente (rs1), un inmediato de 12 bits (imm) y uno como operando
destino rd. El campo op junto con funct3 determinan el tipo de

instruccién codificada.

I-Type

31:20 19:15 14:12 11:7 6:0
iIMMyqp rs1 |funct3 rd op
12 bits 5 bits 3 bits 5 bits 7 bits
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S DEPARTAMENTO
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Instrucciones |, ejemplos

Assembly Field Values

immyqg rs1 funct3 rd op
2di x6, %o, 12 12 s [ o[8[ 1
Musz M @ 6o w]|
b2 o6y E w2 [ 7] s
1o 3%,0Mr(aaby|  OxIF 20 o | 20 3
St x16, %) s 5 23| 1 [ 8] 10
=g s [T 75 o] w

12 bits Shits 3bits 5 hits 7 bits
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Instrucciones S/B

DEPARTAMENTO
DE COMPUTACION

Las instrucciones de carga (S) y de saltos condicionales (B) se

codifican como se indica a continuacién. Ambos formatos codifican

un inmediato en la instruccidn, en el caso de las isntrucciones de

carga es de 12 bits, en los saltos condicionales es de 13 bits y

expresa el desplazamiento en complemento a 2 al que se debe

saltar en relacién al valor actual del PC. Este desplazamiento
(offset) siempre se desplaza una posicién a izquierda antes de
sumarlo al PC ya que se encuentra siempre en posiciones pares.

31:25 24:20  19:15 14:12 11:7 6:0

immqq5 | rs2 rs1 | funct3 | immyg op

immy,40.5| rs2 | rs1 |functd fimmyg.q 14 op
7 bits 5bits 5 bits 3 bits 5 bits 7 bits

S-Type
B-Type
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Instrucciones S, ejemplos

Assembly Field Values

immiys  rs2  rs1 funct3  immag op

sw t2, -6(s3)

sw x7, -6(x19) 1111 111 7 19 2 11010 35
sh s4, 23(t0) .
Sh x20 .23 (x5) 0000000 | 20 | 5 1 10111 | 35
sb t5, O0x2D(zereo) | 0000 001 | 30 0 0 01101 35
sb x30,0x2D (x0)

7 bits Sbits &bits 3 bits 5 bits 7 bits
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Instrucciones B, ejemplos

DE COMPUTA

S DEPARTAMENTO
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#Address
0x70
0x74
0x78
ox7C
0x80 Ll1:

L1 is 4 instructio

# RISC-V Assembly
beq s0, t5, L1 )1
add sl1, s2, s3 )2
sub s5, s6, s7

1w t0, 0(sl) >3
addi =1, s1, -1524

ns (i.e., 16 bytes) past beq

immyz0 = 16 0 0 00O 0001 000 &
bit number 12 11 10 9 8 7654 3210
Assembly Field Values Machine Code
immyzes rs2 181 funct3 immg.g 1 op iMmMypqgs rs2  rs1 funct3 imma.q g4 op
12:‘; i‘; ‘:ﬁ £ [[coo0000] 30 [ 8 [ o [10000] 5 |[o000000 11110]01000] 000 [ 10000 [1100011] (0x01E40863)
7 bits. Sbits  Sbits 3 bits § bits 7 bits 7 bits Sbits  Sbits 3 bits 5 bits 7 bits
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Instrucciones U/J

Las instrucciones de inmediato superior (U) y de saltos
incondicionales (J) se codifican como se indica a continuacién.
Ambos formatos codifican un inmediato en la instruccién, en el
caso de las instrucciones de inmediato superior es de 20 bits, en los
saltos incondicionales es de 21 bits y expresa el valor de los 21 bits
mas altos de la direccién a la que se debe saltar en relacién al valor
actual del PC. Este desplazamiento (offset) siempre se desplaza
una posicién a izquierda antes de sumarlo al PC ya que se

encuentra siempre en posiciones pares.

31:12 117 6:0

IMmMyy.q5 rd op | U-Type

IMMyg 104,11, 19:12 rd op J-Type
20 bits 5 bits 7 bits

75



Instrucciones U, ejemplos

DEPARTAMENTO
PUTACIO|

Assembly

Field Values

lui s5, O0xBCDEF
lui x21,0xBCDEF

immM3s.12 rd op
0x8CDEF ‘ 21 | 55
20 bits 5 bits 7 bits
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Instrucciones J, ejemplos

# Address RISC-V Assembly
0x0000540C jal ra, funcl

0x00005410 add sl, s2, s3

0x000ABC04 funcl: add s4, s5, s8

funcl is 0xA67F8 bytes past jal

imm = OxAG7F8 0 1 0 1 0 0o 1 1 o 111 1111

10086
bit number 20 19 18 17 16 15 14 13 12 11 10 9 8 7654 3210
Assembly Field Values Machine Code
. iMMgo,10:1,11,19:12 rd op IMMz0 10:1,11,19:12 rd op
dat xe. funel [ omamaeooiotoorie [ 1 [ a1 || ottt 1411 100010100110 Joooo1] 1101111 | (0x7FSAGOEF)
h o 20bits Sbis 7 bis 20bits Sbts  7bis
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Decodificacién

Es importante comprender el formato con el que se codifican las
instrucciones al traducirlas al lenguaje maquina para poder realizar
tanto la codificacién como la decodificacién de las mismas en caso

de ser necesario.
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Ejemplo de decodificacion

DEPARTAMENTO
DE COMPUTACION

Assembly

‘ sub x7, x29,x31
sub t2, t4, t6

‘addi x5, x9, -38
addi t0, s1, -38

Machine Code Field Values
funct?  rs2 rs1 funct3 rd op funct7  rs2 rs1 funct3 rd op
(0x41FEBBB3)‘ 0100 000 \11111\11101\ 000 \ 00111 |m1 oow1|| 32 \ 31 \ 29 \ 0 \ 7 \ 51
7bits  5bits S5bits 3bits  5bits 7 bits Thits  5bits S5bis  3bits  5bits 7 bits
immyq.0 rs1 funct3 rd op immy o rs1  funct3 rd op
(0xFDA48293)‘ 11111101 1010 ‘01001‘ 000 ‘ 00101 |001 0011|| -38 ‘ 9 ‘ 0 ‘ 5 ‘ 19
T2bits 5bits 3bits  5bits  70bis 12 bits 5bits 3bis  Sbils  70bis
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DEPARTAMENTO
DE COMPUTACION

Cadena de compilacién

Habiamos presentado anteriormente el esquema de traducciones
que nos permite llegar de cddigo de alto nivel a un formato binario
que pueda cargarse en la memoria principal para poder ejecutar,

vamos a repasarlo y a presentar el mapa de memoria.
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Repaso de la cadena de compilacién

Cédigo de alto nivel
(Compilador)
¥
Cédigo de bajo nivel
(Ensamblador)
¥
Cédigo objeto Cédigo objeto en archivos
(Enlazador) Bibliotecas

v

Cddigo binario ejecutable
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El mapa de memoria

Address
0xFFFFFFFC

0xC0000000
0xBFFFFFF0

0x10001000
0x10000FFC

0x10000000

0x00010000

0x00000000

Segment

Operating
System & /O

Stack

Dynamic Data

Heap

“«—sp

Global Data

Text

Exception
Handlers

“—gp

«—PC

=

DEPARTAMENTO

DE COMPUTA

ON
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El mapa de memoria

El mapa de memoria divide a la memoria principal seglin su uso:
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El mapa de memoria

El mapa de memoria divide a la memoria principal seglin su uso:

e La region mas alta se reserva para comunicacion de entrada y
salida.
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El mapa de memoria

El mapa de memoria divide a la memoria principal seglin su uso:

e La region mas alta se reserva para comunicacion de entrada y
salida.

e Luego se encuentra la regién de datos dindmicos donde en las
direcciones altas vamos a encontrar la pila (stack)y en las
direcciones bajas el heap que es la estructura que permite a
un programa hacer un pedido explicito de memoria (malloc,

free, sin usar el stack).
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El mapa de memoria

El mapa de memoria divide a la memoria principal seglin su uso:

e La region mas alta se reserva para comunicacion de entrada y

salida.

e Luego se encuentra la regién de datos dindmicos donde en las
direcciones altas vamos a encontrar la pila (stack)y en las
direcciones bajas el heap que es la estructura que permite a
un programa hacer un pedido explicito de memoria (malloc,

free, sin usar el stack).

e Luego se encuentran los datos globales(.global), donde se
almacenan variables y constantes globales.
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El mapa de memoria

El mapa de memoria divide a la memoria principal seglin su uso:

e La region mas alta se reserva para comunicacion de entrada y

salida.

e Luego se encuentra la regién de datos dindmicos donde en las
direcciones altas vamos a encontrar la pila (stack)y en las
direcciones bajas el heap que es la estructura que permite a
un programa hacer un pedido explicito de memoria (malloc,

free, sin usar el stack).

e Luego se encuentran los datos globales(.global), donde se
almacenan variables y constantes globales.

e Y luego el texto(.text), que es donde se encuentra el
contenido binario de nuestro programa.
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El mapa de memoria

Address
0xFFFFFFFC

0xC0000000
0xBFFFFFF0

0x10001000
0x10000FFC

0x10000000

0x00010000

0x00000000

Segment

Operating
System & /O

Stack

Dynamic Data

Heap

“«—sp

Global Data

Text

Exception
Handlers

“—gp

«—PC
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Directivas de ensamblado

Existen algunas directivas, que no son realmente instrucciones, sino
indicaciones para que el progama ensamblador puede reservar
memoria, definir constantes y ubicar el programa y los datos segtin
las secciones definidas en el mapa de memoria, a continuacién
presentamos algunas.
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Directivas de ensamblado

ctext Text section

.data Global data section

.bss Global data initialized to 0

.section .foo Section named . foo

.align N Align next data/instruction on 2™-byte boundary
.balign N Align next data/instruction on N-byte boundary
.globl sym Label sym is global

.string “str” Store string “str” in memory

cword wl, w2, ..., wh Store N 32-bit values in successive memory words
.byte bl,b2,....bN Store N 8-bit values in successive memory bytes
.space N Reserve N bytes to store variable

.equ name, constant Define symbol name with value constant

.end End of assembly code
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Seccién de datos y de texto

Veamos por ejemplo cdmo se inicializan los datos en la seccién de
.data que va a ubicar la informacién en lo que el mapa se muestra
como Global Data, arriba del cédigo (.text), mostramos:
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Seccién de datos y de texto

Veamos por ejemplo cdmo se inicializan los datos en la seccién de
.data que va a ubicar la informacién en lo que el mapa se muestra
como Global Data, arriba del cédigo (.text), mostramos:

e Una constante largo de 32 bits (una palabra o word).
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DEPARTAMENTO

Seccién de datos y de texto

Veamos por ejemplo cdmo se inicializan los datos en la seccién de
.data que va a ubicar la informacién en lo que el mapa se muestra
como Global Data, arriba del cédigo (.text), mostramos:

e Una constante largo de 32 bits (una palabra o word).

e Una constante caracter de 8 bits (un byte).
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Seccién de datos y de texto

Veamos por ejemplo cdmo se inicializan los datos en la seccién de
.data que va a ubicar la informacién en lo que el mapa se muestra
como Global Data, arriba del cédigo (.text), mostramos:

e Una constante largo de 32 bits (una palabra o word).

e Una constante caracter de 8 bits (un byte).

e Un arreglo arreglo de palabras de 32 bits.

87



Inicializando datos

1
2
3
4
5
6
7

.section .data

# A partir de este punto comienzan los datos

largo: .word 0x4

caracter: .byte 10

arreglo: .word Oxc, 0x34d, 0x1l, 0xO

.setion .text

# A partir de este punto comienzan las
instrucciones
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Seccién de datos y de texto

Al igual que con los saltos en el programa, las etiquetas que
declaran constantes van a indicar la posicion de memoria desde
donde debe cargarse el dato.
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Clase de hoy

Hoy vimos:

e Definicion de arquitecturas.
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e Definicion de arquitecturas.

e El lenguaje ensamblador de RISC V.
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Hoy vimos:

e Definicion de arquitecturas.
e El lenguaje ensamblador de RISC V.

e Lenguaje maquina y programa almacenado en memoria.
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Clase de hoy

Hoy vimos:

Definicién de arquitecturas.

El lenguaje ensamblador de RISC V.

Lenguaje maquina y programa almacenado en memoria.

Codificacién de instrucciones, compilacién y ensamblado.

90
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Clase anterior

En la clase anterior vimos:

e Definicion de arquitecturas.
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e El lenguaje ensamblador de RISC V.
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e Acceso a memoria y estructuras.
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Hoy vamos a ver:

e Acceso a memoria y estructuras.
e Interfaz binaria de aplicacién.

e Uso de la pila.
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e El conjunto de instrucciones.
e El conjunto de registros.
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i Qué constituye una arquitectura?

e El conjunto de instrucciones.
e El conjunto de registros.

e La forma de acceder a la memoria.

i Qué es una instruccién, un registro o una memoria?
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Clase anterior

Volvamos a nuestro programa de referencia y al ejemplo de control

de ejecucién.
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Programa de ejemplo en C DE COMPUTACION

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}




Escribiendo un loop

DEPARTAMENTO

C RISC V
#s0=pow, sl=x
// calcula el valor de x addi sO, zero, 1
// tal que 2 a la x es 128 add sl, zero, zero
int pow = 1: #t0=128
int x = 0; addi t0, zero, 128
while:
while (pow = 128){ beq sO, t0, fin
pow = pow * 2; slli sO, sO, 1 #pow=pow*2
x = x + 1; addi sl1, sl1, 1 #+=1
} j while
fin:




DEPARTAMENTO

Escribiendo un loop

C RISC V
#s0=pow, sl=x
// calcula el valor de x addi sO, zero, 1
// tal que 2 a la x es 128 add sl, zero, zero
int pow = 1: #t0=128
int x = 0; addi t0, zero, 128
while:
while (pow = 128){ beq sO, t0, fin
pow = pow * 2; slli sO, sO, 1 #pow=pow*2
x = x + 1; addi sl1, sl1, 1 #+=1
} j while
fin:

Esta traduccién indica como podemos implementar un ciclo while
con un salto condicional y uno incondicional.
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Direcciones de memoria DE COMPUTACION

Recordemos como se realiza el acceso a datos en memoria.



DEPARTAMENTO
PUTACIO|

Direcciones de memoria

RISC V permite acceder a la memoria con indices (direcciones) de
32 bits, o sea 4.294.967.296 indices posibles. Pero cabe notar que
el indice apunta a un byte en particular, o sea, a uno de los cuatro
bytes de la palabra, de modo que entre una palabra de 32 bits y
otra, los indices avanzan en cuatro unidades. Podemos indicar que
la lectura o escritura se hara en base a un byte en particular.



S DEPARTAMENTO
<

Accesos a memoria (direcciones) DE COMPUTACION

Byte Address Word Address Data Word Number
13 (12|11 |10 00000010 CD|1 9|2 6|5 B| Word 4
E D C 0000000C 4 0|F 3|0 7|8 8| Word 3
B| A |9 8 00000008 0 1l|EE[2 8|4 2| Word 2
7 6 5 4 00000004 F2/F1l|aclo 7| Word1
3 2 1 0 00000000 A B|CD|E F|7 8 Word0
MSB LSB -
(a) (b) width =4 bytes

A la izquierda (a), vemos los indices de memoria (byte address)
representados de derecha a izquierda, donde a la derecha vemos el
byte menos significativo (LSB) y a la derecha el byte mas
significativo de la palabra (MSB). La direccién de palabra (word
address) corresponde al indice del byte menos significativo de ésta.

10
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Estructura de los arreglos

Los arreglos son estructuras que ubican elementos del mismo
tamafiio y tipo de forma consecutiva en la memoria del procesador.
En un lenguaje de alto nivel, la forma de acceder a un elemento es
a partir de una direccién base y la posicién en el arreglo, a la que
llamamos su indice. La forma de acceder en lenguaje ensamblador
es calculando el desplazamiento desde la direccién del comienzo del
arreglo hasta la direccién en la que se encuentra el elemento.

11
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Acceso a un elemento del arreglo

En este ejemplo el arreglo scores contiene 200 elementos de 32
bits y comienza en la direcciéon 0x174300A0. La forma de acceder
al i-ésimo elemento es cargando el dato que se encuentra en base
+ tamafio * indice, en este caso, si queremos acceder al
elemento 199 seria 0x174300A0 + 4 * 198 = 0x174303B8.

Address Data

174303BC | scores[199]
174303B8 scores [198)

174300A4 scores[1l]
174300A0 scores [0]

o v

Main Memory

12



Acceso a un elemento del arreglo

En el siguiente ejemplo se incrementa el valor de cada elemento del
arreglo en 10.

13
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Incrementando los valores de un arreglo

C RISC V

#s0=dir. scores, sl=i
addi sl1, zero, O
addi t2, zero, 200

for:
bge s1, t2, fin
slli t0, s1, 2
add t0, t0, sO

int i;
int scores[200];

for(i = 0; i < 200; i =i + 1){ w t1, 0(t0)
scores[i] = scores[i] + 10; addi ;1' 1. 10
} sw tl, 0(t0)
addi s1, sl1, 1
j for
fin:

14



Interfaz binaria de aplicacion




Llamadas a funcidn

int main(){
int y;

y = dif_sumas(2,3,4,5);

int dif_sumas(int f, int g,
int h, int i){
int resultado:
resultado = (f+g)—(h+i)
return resultado;

. Cémo escribimos funciones en RISC V pasando un ndmero
arbitrario de parametros y devolviendo un parametro de retorno?

ii5)



Definiendo un contrato

int main(){
int y;

y = dif_sumas(2,3,4,5);

int dif_sumas(int f, int g,
int h, int i){
int resultado:
resultado = (f+g)—(h+i);
return resultado;

Recordemos que contamos con una memoria principal direccionable

y un nimero acotado de registros y con esto vamos a tener que

definir un contrato que indique de qué forma se realizan las

llamadas a funcién. 16



Interfaz binaria de aplicacion

A este contrato que indica de qué forma vamos a realizar las
llamadas a funcién para una arquitectura en particular lo llamamos
interfaz binaria de aplicacién. Define un conjunto de reglas que
tanto quienes programan en ensamblador RISC V como el
programa de compilacién de un lenguaje de alto nivel a
ensamblador RISC V deben respetar para poder interactuar con
otros programas, llamadas a sistema y bibliotecas compartidas.

17
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Ejemplo con argumentos

main :#s7=y

int main (){ addi a0, zero

int ; .
y addi al, zero,

, ddi a2
y = dif_sumas(2,3,4,5); Al &4, z6M9,

g b~ W N

addi a3, zero,
jal dif_sumas
add s7, a0, zero
dif _sums :#s3=result
add t0, a0, al
add tl1, a2, a3
sub s3, t0, tl
add a0, s3, zero

int dif_sumas(int f, int g,
int h, int i){
int resultado:
resultado = (f+g)—(h+i)
return resultado;

jr ra

18
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Llamadas a funcién, argumentos

En un lenguaje de alto nivel los programas se dividen en funciones
que pueden llamarse unas o otras. Para implementar esta
funcionalidad se debe decidir de qué manera una funcién puede
identificar a otra y cémo se enviaran los parametros de entrada y
de salida. Los pardmetros de entrada serdn llamados argumentos y
los de salida valor de retorno.

19
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Llamadas a funcién, jal

En RISC V la funcién llamadora puede utilizar los registros a0
hasta a7 para enviar argumentos y luego la funcién llamada utiliza
a0 para copiar el valor de retorno. A la hora de invocar la ejecucién
de una funcién la funcién llamadora debe almacenar el PC en ra.
Esto se consigue utilizando la instruccién jal ra, foo, donde

foo es la funcién llamada.

20



Llamadas a funcidn, preservando estado

La funcién llamada no debe interferir con el estado de la funcién
llamadora, debido a esto debe respetar los valores de los registros
guardados (s0 a s11) y el registro de la direccién de retorno (ra),
que indica como retornar la ejecucién a la funcién llamadora.
También debe mantenerse invariante la porcién de memoria

(stack) correspondiente a funcién llamadora.

21



Ejemplo de llamada

DEPARTAMENTO

C RISC V
int main(){
simple () ;
. 0x00000300 main: jal ra, simple
} 0x00000304
void simple(){ | 0x0000051c simple: jr ra
return ;
}

22



Ejemplo de llamada

C | RISC V

int main(){
simple () ;

0x00000300 main: jal ra, simple
} 0x00000304
void simple(){ | 0x0000051c simple: jr ra
return ;

}

Un ejemplo de llamada a simple y un retorno con un salto
incondicional al registro de la direccén de retorno jr ra.

22



Ejemplo con argumentos

A continuacién presentamos un ejemplo que involucra argumentos.

23
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Ejemplo con argumentos

C RISC V

int main(){ main :3#s7=y

. addi a0, zero,
Iint vy,

addi al, zero,

- ddi a2
y = dif_sumas(2,3,4,5); addl ac, zero,

a b~ W N

addi a3, zero,
jal dif_sumas
add s7, a0, zero
dif _sums :#s3=result
add t0, a0, al

add tl1, a2, a3

sub s3, t0, tl

add a0, s3, zero

}...

int dif_sumas(int f, int g,
int h, int i){

int resultado:

resultado = (f4+g)—(h+i)
return resultado;

}

jr ra

24



Uso de la pila y el stack pointer
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i Qué es la pila?

La pila es:

25



S DEPARTAMENTO
<

DE COMPUTACION

=

i Qué es la pila?

La pila es:

e Una region de la memoria definida entre una direccién de
memoria alta y la direccién indicada en el registro stack
pointer (sp).

25



DEPARTAMENTO
DE COMPUTACION

i Qué es la pila?

La pila es:

e Una region de la memoria definida entre una direccién de
memoria alta y la direccién indicada en el registro stack
pointer (sp).

e Un mecanismo para almacenar valores temporarios con una
semantica de LIFO (el dltimo elemento almacenado es el
primero al que accedemos).

25
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La pila (stack)

La semdntica de uso es a través de operacién de agregado (push)
y retiro (pop) de un elemento siempre al tope de la pila. La pila
suele comenzar en las direcciones altas de la memoria y va
tomando (con cada push) las direcciones inmediatamente mds
bajas. Por eso se suele decir que la pila crece hacia abajo.

26



Stack pointer (sp)

Al igual que en muchas otras arquitecturas, RISC V propone el uso
de uno de sus registros, sp (stack pointer), para indicar la
direccién de tope de pila. En este ejemplo vemos como se actualiza
la pila (y el stack pointer) luego de agegar dos palabras de 32 bits
(0x12345678 y OxFFEEDDCC) cambiando el sp de 0OxBEFFFAES a
OxBEFFFAEO (sp apunta al dltimo elemento cargado).

Address Data Address Data
BEFFFAES |AB000001 |«—sp BEFFFAESB |AE000001
BEFFFAE4 BEFFFAE4 | 12345678
BEFFFAEQ BEFFFAEQ | FFEEDDCC |< sp
BEFFFADC BEFFFADC

(a) ) ) (b)

27



La pila (stack)

Parte de la convencién de RISC V (interfaz binaria de aplicacién)
indica que el stack pointer debe siempre estar alineado a 16 bytes,
esto significa que su valor debe siempre cumplir con la congruencia

sp%16 == 0

28



; S DEPARTAMENTO
La pila (stack) B
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Veamos un breve ejemplo del uso de la pila y la alineaciéon del
stack pointer.

# apilando (push) en una llamada a funcion

foo: addi sp, sp, —16 # restamos 16 aunque
precisemos 8 bytes

sw a0, 4(sp) #guarda a0

sw ra, O(sp) #guarda ra

# cuerpo de la funcion

# desapilando (pop)

Iw a0, 4(sp) #restaura a0

Iw ra, O(sp) #restaura ra

addi sp, sp, 16 # restaura el valor de stack
pointer

29



La pila y las llamadas a funcién

Habiamos dicho que al llamar a una funcién habia un acuerdo
entre la funcién llamadora (la que inicia la llamada) y la funcién
llamada (la que la recibe), donde se preservaba parte del estado del
procesador entre el llamado y el retorno.

30



Reglas para llamar funciones




Vamos a presentar una serie de reglas que deberian asegurar que
cada funcién llamadora entrega y cada funcién llamada recibe a los
elementos de memoria del procesador (registros, memoria general y
pila) en un estado conocido.

31



Reglas de llamada

Preserved (callee-saved)

Saved registers: s0-511

Nonpreserved (caller-saved)

Temporary registers: t0-t6

Return address: ra

Argument registers: al-a7

Stack pointer: sp

Stack above the stack pointer

Stack below the stack pointer

32



Estado del procesador entre llamadas

Reglas de preservaciéon de estado:

33



Estado del procesador entre llamadas

Reglas de preservaciéon de estado:

e Regla para la Ilamadora: Antes de llamar debe guardar los
valores de los registros temporarios que necesite utilizar al
retornar (t0-t6, a0-a7).

33



Estado del procesador entre llamadas

Reglas de preservaciéon de estado:

e Regla para la Ilamadora: Antes de llamar debe guardar los
valores de los registros temporarios que necesite utilizar al
retornar (t0-t6, a0-a7).

e Regla para la llamada: Si va a utilizar los registros
permanentes (s0-s11, ra) debe guardarlos al comenzar y
restaurarlos antes de retornar.

33



Estado del procesador entre llamadas

Reglas de preservaciéon de estado:

e Regla para la Ilamadora: Antes de llamar debe guardar los
valores de los registros temporarios que necesite utilizar al
retornar (t0-t6, a0-a7).

e Regla para la llamada: Si va a utilizar los registros
permanentes (s0-s11, ra) debe guardarlos al comenzar y
restaurarlos antes de retornar.

Para esto podemos utilizar la pila.

33
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Ejemplo recursivo

C RISC V

factorial :addi sp, sp, —16
sw a0, 4(sp) #guarda a0
sw ra, O(sp) #guarda ra

ddi t0, .1
int factorial(int n){ aad! zere

. bgt a0, t0, else
'ii:ufn: i){ addi a0, zero, 1
Velse z.addi sp, sp, 16
return o .
(nxfactorial(n—=1)); eI'se: addi ?0' a0, -1
jal factorial
}} Iw tl, 4(sp)

lw ra, O0(sp)
addi sp, sp, 16
mul a0, tl, a0
jr ra

34
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Stack pointer (sp)

Podemos ver como cada llamada recursiva utiliza una porcién de la
pila para preservar su estado y asi cumplir con las reglas antes
mencionadas, al espacio de la pila utilizado por la llamada en
cuestién lo llamamos marco de pila o stack frame.

Address Data Address Data Address Data
FFO “+sp FFO FFO “—sSp a0=6
FEC [FEC |20 () [FEC | a0 (3) s
FE8 g_FEB ra g_FEB ra «—gp a0=3x2
FE4 E [FE4 |20 @) E [FE4 |20 (2) o
FEO % |FEO [ ra (0x8528)| «— sp % [FEO | ra (0x8528) a0=2x1
FDC % [FDC =0(1) % [FDC a0 (1)
FD8 [FD8 | == (0x8528)| «— Sp [FD8 | == (0x8528) a0=1

| l | | i |
(a) | | (b) 1 I (c) [ [

35
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Stack pointer (sp)

Aqui la columna a muestra las posiciones altas de la memoria antes
de la primer llamada, la columna b muestra el estado luego de tres
llamadas recursivas y la columna c indica cédmo se actualizan los
valores de a0 al ir regresando de cada llamada (jr ra).

Address Data Address Data Address Data

FFO “+sp FFO FFO “—sSp a0=6

FEC [FEC |20 3) [FEC |20 (3) .

FE8 w |FE8 | ra o |FE8|:a «—sp a0= 3x2
2" 2-

FE4 E[FE4 |20 @ E[rE4 (202 )
- = n=2

FEO % |FEO | ra (0x8528)| «— sp < |FEO | ra (0x8528) a0=2x1
o 8-

FDC % [FDC |20 (1) @ [FDC |20 (1)

FD8 [FD8 | == (0x8528)| <— Sp [FD8 | = (0x8528) a0=1

(a) | | (b) 1 I (c) [ [ 36
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Pseudoinstrucciones

Algunas de las instrucciones empleadas en el lenguaje ensamblador
no son verdaderamente instrucciones, en el sentido de que el
procesador no sabe interpretarlas, sino que es el compilador el que
se encarga de traducir una de estas asi llamadas pseudointstruccién
en una instruccién propiamente dicha. El uso de las
pseudoinstrucciones se debe a que encapsulan operaciones comunes
y convenientes pero que no justifican su inclusién en el set de
instrucciones de la arquitectura si queremos mantenerlo acotado.

37



Ejemplos de pseudoinstrucciones

DEPARTAMENTO
DE COMPUTACION

J label jal zero, label

jir ra jalr zero, ra, 0

my Lh, 53 addi tb, s3, 0

not s7, t2 xori s7, tz2, -1

nop addi zero, zero, 0

11 58, Ox7EF addi s8, zero, Ox/EF

1i s8, 0xb6789DEF Tui s8, 0xb678A
addi s8, s8, OxDEF

bgt sl1, t3, L3 b1t t3, sl1, L3

bgez t2, L7 bge t2, zero, L7

call L1 jal L1

call L5 auipc ra, imma.qp
jalr ra, ra, imm;.,

ret jalr zero, ra, 0 38
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Recomendacién a la hora de programar

No intenten memorizar los nombres de todas las instrucciones y su
semdntica, tengan la documentacién mientras escriben o hacen
seguimiento de sus programas de lenguaje ensamblador:

e Hoja con lista de registros e instrucciones.
e Reglas de llamada a funcién.

e Estructura de la memoria.

39



Recomendacién a la hora de programar

Vuelvan a revisar el material de lectura (manuales, clases y
apuntes) tantas veces como haga falta. Hacer repetidas lecturas de
la documentacién es parte de la practica de la ingenieria.

40
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Programa de ejemplo en C DE COMPUTACION

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}

41



DEPARTAMENTO

Programa de ejemplo en C DE COMPUTACIO

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}

i Qué podemos entender de la traduccién que presentamos antes?

41



Programa de ejemplo en ASM (RISC V)

DEPARTAMENTO

1 | .section .text

2 | .global sumar_arreglo

3 |sumar_arreglo:

4 |# a0 = int a[], al = int largo, t0 = acumulador, tl
=

5 | Ii t0, 0 # acumulador = 0

6 | li tl, 0 # i =0

7 | ciclo: # Comienzo de ciclo

8 | bge tl, al, fin # Si i >= largo, sale del ciclo

9 |slli t2, t1, 2 # Multiplica i por 4 (1 << 2 = 4)

10 | add t2, a0, t2 # Actualiza la dir. de memoria

11 | lw t2, 0(t2) # De—referencia la dir,

12 | add t0, t0, t2 # Agrega el valor al acumulador

13 [addi t1, tl1, 1 # Incrementa el iterador

14 |j ciclo # Vuelve a comenzar el ciclo

15 | fin:

16 |mv a0, to # Mueve t0 (acumulador) a a0

17 | ret # Devuelve valor por a0 42
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Programa de ejemplo en C DE COMPUTACION

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}

43



DEPARTAMENTO

Programa de ejemplo en C DE COMPUTACIO

1 |int sumar_arreglo(int a[], int largo) {
2 int acumulador = 0;

3 int i;

4 for (i = 0;i < largo;i++) {

5 acumulador = acumulador + a[i];
6 }

7 return acumulador;

8 |}

i Qué podemos entender de la traduccién que presentamos antes?
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Programa de ejemplo en ASM (RISC V)

DEPARTAMENTO

1 | .section .text

2 | .global sumar_arreglo

3 |sumar_arreglo:

4 |# a0 = int a[], al = int largo, t0 = acumulador, tl
=

5 | Ii t0, 0 # acumulador = 0

6 | li tl, 0 # i =0

7 | ciclo: # Comienzo de ciclo

8 | bge tl, al, fin # Si i >= largo, sale del ciclo

9 |slli t2, t1, 2 # Multiplica i por 4 (1 << 2 = 4)

10 | add t2, a0, t2 # Actualiza la dir. de memoria

11 | lw t2, 0(t2) # De—referencia la dir,

12 | add t0, t0, t2 # Agrega el valor al acumulador

13 [addi t1, tl1, 1 # Incrementa el iterador

14 |j ciclo # Vuelve a comenzar el ciclo

15 | fin:

16 |mv a0, to # Mueve t0 (acumulador) a a0

17 | ret # Devuelve valor por a0 44
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Clase de hoy

Hoy vimos:
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Hoy vimos:

e Acceso a memoria y estructuras.
e Interfaz binaria de aplicacién.

e Uso de la pila.

45



Fin




Sistemas Digitales

Microarquitectura

Primer Cuatrimestre 2025

Sistemas Digitales
DC - UBA

N
2
=

DEPARTAMENTO

DE COMPUTACION

Faculad do Gioncis Exactas y Naurals

s



Introduccion



S DEPARTAMENTO
<

DE COMPUTACION

=

Clase de hoy

Hoy vamos a ver:

e Definicién de microarquitecturas.



S DEPARTAMENTO
Clase de hoy B

DE COMPUTACION

Hoy vamos a ver:

e Definicién de microarquitecturas.

e Estado de arquitectura, elementos de memoria, datapath y
unidad de control.



S DEPARTAMENTO
Clase de hoy B

DE COMPUTACION

Hoy vamos a ver:

e Definicién de microarquitecturas.

e Estado de arquitectura, elementos de memoria, datapath y
unidad de control.

e Procesador de ciclo simple.



~ DEPARTAMENTO
< DE COMPUTACION

=

Clase de hoy

Hoy vamos a ver:

Definicién de microarquitecturas.

Estado de arquitectura, elementos de memoria, datapath y
unidad de control.

Procesador de ciclo simple.

Instrucciones de memoria, registros y saltos condicionales.



DEPARTAMENTO
DE COMPUTACION

Microarquitectura

La microarquitectura se ubica conceptualmente entre la
arquitectura (aquello que se expone a la persona que programa el
sistema) y la légica combinatoria y secuencial. Implementa el
soporte de estado arquitectdnico y la légica de control para
actualizar el estado segln lo indique la semantica de las
instrucciones de la ISA.



Estado de la arquitectura

La microarquitectura va encargarse de actualizar el estado de la
arquitectura, o sea, los registros de propdsito general y el
program counter. Recordemos que nos referimos como estado a
los valores almacenados en los elementos de memoria y por ende el
estado de la arquitectura se refiere a los elementos de memoria

expuestos a la persona que programa el sistema.



DEPARTAMENTO
PUTACIO|

Estado de la arquitectura

El procesador puede contener elementos de memoria que
constituyen estado por fuera de la arquitectura, registros o banco
de memoria utilizados para implementar mecanismos o funciones

propios de la arquitectura pero que no son expuestos.



Instrucciones a evaluar

A la hora de justificar las decisiones de disefio e implementacién de
una microarquitectura para RISCV, vamos a enfocarnos en un
subconjunto de las instrucciones bdésicas:
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Instrucciones a evaluar

A la hora de justificar las decisiones de disefio e implementacién de
una microarquitectura para RISCV, vamos a enfocarnos en un
subconjunto de las instrucciones bdésicas:

e Registros: add, sub, and, or, slt.
e Memoria: sw, 1w.

e Salto: beq.
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Proceso de diseino - Datapath

Para comenzar con el disefio de un sistema complejo, como es el
caso de nuestra microarquitectura, un enfoque posible es comenzar
presentando y vinculando a los elementos que realizardn
transformaciones con los datos, a esto lo llamaremos el camino de
datos o datapath.



\-'\»' DEPARTAMENTO

Proceso de diseno - Unidad de control DE COMPUTACION

Luego decidiremos cémo implementar la unidad que se asegura de
coordinar a los elementos del datapath para transformar a los
datos a partir de la manipulacién de sus senales de control, a esto
lo llamaremos unidad de control.
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Sobre los diagramas DE COMPUTACION

En los diagramas se debe observar que:

e Las lineas gruesas indican datos de 32 bits.
e Las lineas delgadas indican datos de 1 bit.
e |as lineas intermedias indican datos de otro tamaiio.

e Las lineas azules indican senales de control.
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Elementos de memoria DE COMPUTACION

Ahora vamos a presentar y estudiar los elementos de memoria del
datapath.

10



Elementos de memoria

PCNext

CLK

PC

32

A RD

Instruction
Memory

32

CLK |
|

WE3
-+ Al RD1 ==
| A2 RD2 -~
1 A3 R

egister
7z WP3 File

B

DEPARTAMENTO
DE COMPUTACION

CLK

WE

Data
Memory

WD
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CLK CLK
CLK \ | ||
PCNext PC - Al WES RD1 |~ WE
32| 32 -’; A RD 7? ° ®
. + A RD |~
Instruction 32 32
Memory 7 A2 RD2 [~ Data
1 A3 Reoish Memory
egister
“51 WD3 File 71 WD

La salida PC indica la posicién de la instruccién actual, PCNext
es la entrada que indica la posicién de la proxima instruccidn.

12
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Memoria de instrucciones

CLK CLK
CLK | ] | |
PCNext PC - Al WES RD1 |~ WE
32| 32 -/3? A RD 7? ° ®
. + A RD =~
Instruction 32 32
Memory | A2 RD2 =%, Data
1 A3 Reoish Memory
egister
“51 WD3 File 71 WD

La memoria de instrucciones toma una direcciéon A de 32 bits y

vuelca el valor de 32 bits que se encuentra en esa posicién por la
salida RD.

13



Archivo de registros

CLK
CLK C'TK |
PCNext PC - A1 WE3 RD1 |+~ WE
32 32 -’; A RD -’; s %
i + A RD |-~
Instruction 32 32
Memory 7| A2 RD2 -5, Data
—,SL A3 Reaist Memory
egister
“51 WD3 File +5] WD

El archivo de registros contiene los 32 registros x0-x31 y tiene dos
puertos (salidas de datos) de lectura (RD1 y RD2) que vuelcan el
valor de los registros en la posiciones indicadas por las entradas Al
y A2. También cuenta con un tercer puerto de escritura (entrada
de datos) WD3 que escribe el dato recibido en la posicién indicada
por A3 durante el flanco ascendente de reloj si la sefial de control

WES3 se encuentra alta.
14
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Memoria de datos

CLK CLK
CLK \ | ||
PCNext PC - Al WES RD1 |~ WE
32| 32 -’; A RD 7? ° ®
. + A RD |~
Instruction 32 32
Memory 7 A2 RD2 [~ Data
1 A3 Reoish Memory
egister
“51 WD3 File 71 WD

La memoria de datos toma una direccién A de 32 bits y lee el valor
de 32 bits que se encuentra en esa posicién por la salida RD si el
valor de la sefal de control WE se encuentra bajo o escribe el
contenido que ingresa por WD durante el flanco ascendente del
ciclo de clock si se encuentra alto.

ii5)
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DEPARTAMENTO
DE COMPUTACION

Procesador de ciclo simple

Vamos a estudiar una microarquitectura donde las operaciones se
completan durante un uanico cilo de reloj, por lo que la
duracién del ciclo debe ser suficientemente larga como para
permitir completar la operacién més costosa (las que toma mds
tiempo). Esto significa que el rendimiento del procesador no sera
Séptimo pero resulta conveniente como ejemplo introductorio a las
microarquitecturas.

16
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Programa de ejemplo DE COMPUTACION

Utilizaremos el siguiente programa de ejemplo para justificar la
interaccion entre el datapath y la unidad de control e iremos
conectando los elementos de memoria y agregando elementos y

senales de control a medida que haga falta.
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Programa de ejemplo DE COMPUTACIO

Address Instruction Type Fields Machine Language

immy . rsl 3 rd op
0x1000 L7: 1w x6, -4(x9) I 111111111100 01001 010 00110 0000011 FFC4RA303

immy;.s rs2 rsl 3  immy, op
0000000 00110 01001 010 01000 0100011 0064R423

0x1004 sw  xb6, 8(x9) S
funet7 rs2 rsl 3 rd op

0x1008 or x4, x5, x6 R 0000000 00110 00101 110 00100 0110011 0062E233
immy, g5 rs2 rsl 3  immyg,, op

0x100C beq x4, x4, L7 B 1111111 00100 00100 000 10101 1100011 FE420AE3

Aqui podemos ver la posiciéon de memoria en la que se encuentran
las instrucciones codificadas, sus mnemdnicos y la divisién de los
distintas partes de cada palabra de 32 bits segtin su interpretacién
para la arquitectura.

N

18
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Instrucciones de memoria
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DEPARTAMENTO
DE COMPUTACION

Address Instruction Type Fields
immy . rsl 3
0x1000 L7: lw =6, -4(x9) I 111111111100 01001 010
immy; s rs2 rsl 3
0x1004 sw  x6, 8(x9) S 0000000 00110 01001 010
funct7 rs2 rsl 3
0x1008 or x4, x5, x6 R 0000000 00110 00101 110
immy, g5 rs2 rsl 3
0x100C beq x4, =4, L7 B 1111111 00100 00100 000

rd
00110
immy,,
01000
rd
00100

immy,
10101

Machine Language

op
0000011
op
0100011
op
0110011

op
1100011

FFC4A303

0064n423

0062E233

FE420RAE3

Comenzaremos estudiando los componentes involucrados con la

lectura de la instruccién de memoria y la ejecucién de la primera

instruccién (fetch y Iw).

19
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CLK
PCNext|™pC | o RD |Instr —
(i Instruction (i | —{ A RD j—
g | Memory | I Data
° £ Memory
2 WP
w —w
8
2
Address Instruction Type Fields Machine Language

immy. rsl f3 rd op
0x1000 L7: lw x6, -4(x9) I 111111111100 01001 010 00110 0000011 FFC4A303

Vemos que la salida de PC indica la direcciéon A desde donde leer
la instrucciéon actual de la memoria de instrucciones. La instruccién
codificada es la que corresponde a una lectura de memoria (lw).

20
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Lectura de memoria

0x2004

7]
5
%0 [2
B
ol
=
=
m
g
b2}
o
m

A RD

— A RD|—

Instruction

0001x0 |3

uj — A2 RD2 ‘
Memo i Data
Yl — A3 . Memory
& wps Register 1w
I File
Address Instruction Type Fields Machine Language

immyy.o rsl f3 rd op
0x1000 L7: 1w x6, -4(x9) I 111111111100 01001 010 00110 0000011 FFC4A303

Los bits 19:15 de la instruccién indican el indice de 5 bits del
operando fuente (registro) que contiene la base de la direccién a
leer de memoria, por este motivo conectamos esta parte de la
salida de datos de la memoria de instrucciones RD a la entrada de
direccién de lectura Al del archivo de registros.

21



S DEPARTAMENTO
<

Extension del desplazamiento DE COMPUTACION

0x2004

Data
— A3 Memory
|03 Register o

7 File g

|
I

0evp040 [2

Address Instruction Fields Machine Language

imm .o rsl 3 rd op
0x1000 L7: lw x6, -4(x9) I 111111111100 01001 010 00110 0000011 FFC4A303

El cémputo de la direccién toma en cuenta también el
desplazamiento, que en esta instruccion se codifica como los 12
bits que se encuentran en 31:20, como se trata de un valor en
complemento a dos que debemos sumar a la base, es necesario
extenderlo con un componente adicional.
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Sumando la base DE COMPUTACION

ALUControlzo
000
CLK LK
L
WE3 _ 0x2004 WE
18 \1 RD1
A C
° — A RO}
Instruction =
% —
3| Memory 1 ) Data
8 —] A3 Memory
3 Register = wr
w3 NG WD
- OXFFFFFFFC
OXFFC
Address Instruction Type Fields Machine Language

immyy, rsl f3 rd op
0x1000 L7: lw x6, -4(x9) I 111111111100 01001 010 00110 0000011 FFC4A303

Para calcular la direccién de lectura utilizamos la ALU, ingresando
base y desplazamiento como entradas e indicando que la opreacién
a realizar es una suma.

23



Escritura a registro

RegWrite
1

N WES o < WE

° h;m‘ j ALUResult A RD RsnadDala

2 | Memo 02 [— 0x20 pata | 10

| \yps Register _ xeDmry
File
OXFFFFFFFC
Address Instruction Type Fields Machine Language
immyy; rsl 3 rd op

0x1000 L7: lw x6, -4(x9) I 111111111100 01001 010 00110 0000011 FFC4A303

El valor resultante define la direcciéon A desde donde leer la
memoria de datos, cuyo resultado RD es ingresado en el puerto de
escritura WD3 del archivo de registros a la vez que cargamos los
bits 11:7 de la instruccién a la direccién de escritura y habilitamos
la sefal de control WE3.

DEPARTAMENTO
DE COMPUTACION
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Actualizando el PC

<| instruction | %

Address Instruction Type Fields Machine Language

immy sl 3 rd op
0x1000 L7: lw x6, -4(x9) I 111111111100 01001 010 00110 0000011 FFC4A303

Mientras se estd ejecutando esta instruccién debemos, a la par,
calcular la posicién desde donde leer la préxima instruccién, para

esto utilizamos un sumador que incrementa en 4 el valor acual del
PC y lo carga en PCNext.

25
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Escritura a registro DE COMPUTACION

ImmSrc ALUControl MemWrite
1

ALUResul A ReadData

(| ox200C D:

WriteData

Address Instruction Type Fields Machine Language

immgs  r2  rsl f3 immg  op
0x1004 sw  x6, 8(x9) S 0000000 00110 01001 010 01000 0100011 0064A423

Para una escritura a memoria (sw), se utiliza el mismo mecanismo
para determinar la direccién con una base y desplazamiento, pero
se realiza una segunda lectura desde el banco de registros a través
de los bits 24:20 de la instruccidn indicando la posicién en A2y
asignando la salida RD2 al puerto de escritura WD de la memoria

de datos mientras se habilita WE.
26



Instrucciones con registros




Estructura de las instrucciones R

Las instrucciones con registros van a respetar un mismo esquema,
donde tendremos dos registros de fuente, uno de destino y donde
vamos a utilizar a la ALU para distintas operaciones segtin la

semantica de cada caso.

27
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Datapath actualizado DE COMPUTACION

RegWiite I ALUSrc ALUControlzo MemWrite ResultSrc
1 X 011 0

; hg ALUResul
A2 D2 O e[ <[
A | S y

Register
2% File

£6232900%0 |2

0x00000008

Address Instruction Type Fields Machine Language
funct7 rs2 rs1 f3 rd op
0x1008 or x4, x5, x6 R 0000000 00110 00101 110 00100 0110011 0062E233

Agregamos dos multiplexores, uno para permitir usar el segundo
puerto de lectura del archivo de registros RD2 como segundo
operando de la ALU, y otro para permitir usar la salida de la ALU
como dato a escribir en el puerto de escritura del archivo de
registros WD3. La entrada de operacién de la ALU determina la

semantica de la instruccién.
28
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Diseno incremental

Podemos notar que el diseno de esta microarquitectura realiza las
operaciones necesarias para computar todas la instrucciones
presentadas hasta ahora y permite decidir cudles salidas actualizan
el estado del procesador en base a las sefales de control de las
memorias, el extensor de signo, la ALU y los multiplexores.

29
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RegWrite  ImmSrc  ALUSrc ALUControlzg MemWrite ResultSrc
1 0 o011 0
CLK ‘T\L
~— WE3 __ 6 SrA
> c RD s 1 RD1 =
A S| ALUResul
13 -l R 14
Instruction | X 10 Z[ 14
Memory | § 2 f 0]sreB Data
N A3 1110 - Memory
I Register riteData
8 - File
cPI 0x00000008
Address Instruction Type Fields Machine Language
funct7? rs2 rs1 f3 rd op
0x1008 or x4, x5, x6 R 0000000 00110 00101 110 00100 0110011 0062E233

Observemos las sefiales de control: RegWrite, ImmSrc, ALUSrc,
ALUControl, MemWrite, ResultSrc. El manejo de estas sefiales
serd la responsabilidad de la unidad de control.

30
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Salto condicional DE COMPUTACION

Las instrucciones de salto condicional definen un desplazamiento
con respecto al PC de 13 bits codificado en 12 bits, donde el
tltimo bit se supone siempre en cero, es por esto que el extensor
de signo debe tratar este caso por separado, con lo que su entrada
de control pasa a tener dos bits.
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Extensién de signo DE COMPUTACION

ImmSrc  ImmExt Type Description
00 {{20{Instr[311}}, Instr[31:20]} 1 12-bit signed immediate
01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate
10 {{20{Instr[311}}, Instr[7], Instr[30:25], Instr[11:8], 1’b0} B 13-bit signed immediate

En esta tabla vemos como debe intepretar y extender las entradas
el extensor para cada caso seglin el tipo de instruccién. Esto se le
indica a través de la entrada de control ImmSrc de dos bits.
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Instrucciones de salto DE COMPUTACION

RegWrite  ImmSrc  ALUSrc ALUControl,
0 10 0 001

WE

RD
Data
Memory

PCTarget

.
FFA OxFFFFFFF4

0x

Address Instruction Type Fields Machine Language

op
1

immu,es 12 rsl 3 immgn
0x100C beq x4, x4, L7 B 1111111 00100 00100 000 10101 100011 FE420AE3

Agregando el caso necesario al extensor, un multiplexor y un
sumador para actualizar la entrada de PCNext, podemos
implementar soporte para saltos condicionales. El multiplexor
selecciona la segunda entrada solamente si se cumple la condicién

de salto (en este caso si el flag Z esta activado).
33
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Légica de control B

DE COMPUTACION

)
PCSre
ResultSre
MemWrite
—op  [ALUContolz
== funct3 [ALUSro
[ funct7s [ immsre, o
Zero  [RegWite
[

Control
Unit

cLk CLK

s WES ~wel
A Rofnst (= A1 RD1 Steh [7 Zero y

S| ALUResut A Ro |ReadData ||

Instruction iz P 2
Memory we Kad RD2 SreB. Data

1" . 1 Memory

| o Register WriteData "o

PCT: t
Jrcrare
PCPlus4

Result

Aqui vemos el datapath y la unidad de control de un procesador

de ciclo simple, con sus entradas, salidas y sefiales de control.

34



DEPARTAMENTO
DE COMPUTACION

Unidad de control en cascada

zero PCSIc
Branch

ResultSrc
MemWrite
ALUSrc
ImmSrc+.o
RegWrite

OPs:0

funct3,9 ALUControly.o

funct7s

La unidad de control se puede desacoplar de forma jerdrquica entre
el controlador y el decodificador, donde el decodificador decide
qué operacidn realizar en la ALU, también se agrega una
compuerta AND para decidir si se realiza el salto condicional en el
caso de beq.
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Unidad de control

Instruction Op RegWrite  ImmSrc  ALUSrc MemWrite  ResultSrc  Branch ALUOp
Tw 0000011 1 00 1 0 1 0 00
sw 0100011 0 01 1 1 X 0 00
R-type 0110011 1 XX 0 0 0 0 10
beq 1100011 0 10 0 0 X 1 01

El controlador debe implementar esta funcién en la version
desacoplada, veamos que ALUOp indica simplemente si se debe
realizar una operacién de la ALU o no, el decoder sera responsable
de decidir cudl operacién realizar.
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Unidad de control DE COMPUTACION

ALUOp funct3  {ops, funct7s}  ALUControl Instruction
00 x x 000 (add) Tw, sw
01 x x 001 (subtract) beq
10 000 00,01, 10 000 (add) add

000 11 001 (subtract) sub
010 x 101 (set less than) st
110 X 011 (or) or
111 x 010 (and) and

El decodificador debe implementar esta funcién en la versién
desacoplada.

37



DEPARTAMENTO

Implementando ambas unidades DE COMPUTACIO

Con las técnicas vistas para los circuitos combinatorios podemos
implementar tanto el controlador como el decodificador.
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Ejemplo de ejecucién (and)

~ DEPARTAMENTO
< DE COMPUTACION

A RD|IDSE

—
PCSrc

Controll e sutsre

[P ——

Unit
MemWrite

op ALUControlyo
|— funct3 [ALUSrc

funct?s | ImmSrc,
Zero [RegWiite
’— IR

Instruction
Memory

C%K 1 xx 010 ClLK 0 0
o] o WES oo SrcA Zero WE
ReadDat:
i 2| ALUResult A po [RexdData
A2 RD2 SrcB Data
A3 Memory
Register | WriteData
wos "B wD
PCT.
L [PCTarget
a1
Result
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Add inmediate

Instruction Opcode ~ RegWrite ~ ImmSrc ALUSrc  MemWrite  ResultSrc Branch ALUOp

Tw 0000011 1 00 1 0 1 0 00
sw 0100011 0 01 1 1 x 0 00
Retype 0110011 1 xx 0 0 0 0 10
beq 1100011 0 10 0 0 x 1 01
addi 0010011 1 00 1 0 0 0 10

Si quisiéramos agregar soporte para una suma con inmediato, seria
suficiente agregar la siguiente linea a la funcién del controlador.
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Hoy vimos:

e Definicién de microarquitecturas.
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unidad de control.

Procesador de ciclo simple.
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