
Representación de la información

Números enteros

Primer Cuatrimestre 2025

Sistemas Digitales

DC - UBA

1

Introducción

Representando información.

Queremos representar una magnitud a través de un sistema de

representación:

Finito soporte fijo, cantidad de elementos acotados

Composicional diversas magnitudes podrán representarse con un

conjunto de elementos atómicos que deben ser fáciles

de implementar y componer

Posicional la posición de cada dı́gito determina uńıvocamente

en qué proporción modifica su valor a la magnitud

total del número

El soporte formal lo encontraremos en las bases de

representación numérica.

2

Bases.

En términos prácticos una base determina la cantidad de

śımbolos distintos que podemos encontrar en un d́ıgito dado

dentro de nuestra representación.

Una misma magnitud puede tener distintas representaciones en

distintas bases. Por ejemplo la magnitud asociada al cuatro puede

representarse como:

Base Valor Notación

2 100 (100)(2)
3 11 (11)(3)
10 4 (4)(10)

3

Bases.

• En base 2, usamos los śımbolos 0 y 1 y escribimos los

naturales: 0, 1, 10, 11, 100, 101, 110...

• En base 3, usamos los śımbolos 0, 1 y 2 y escribimos los

naturales: 0, 1, 2, 10, 11, 12, 20...

• ...y aśı...

Bases más comunes
Base Śımbolos usados

2 (binario) 0, 1

8 (octal) 0, 1, 2, 3, 4, 5, 6, 7

10 (decimal) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

16 (hexadecimal) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

4

Cambios de bases

Recordemos que un cambio de base es una operación que

transforma un número n = [1, 1, 0, 1](1101(2)) representado como

lista de śımbolos para una base dada, por ejemplo 2 (binario) y lo

representa en otra base, por ejemplo 10 (decimal) [1, 3](13(10)).

1101(2) → 13(10)

Podemos pensar que el cambio de base es una traducción entre dos

formas de representar una misma magnitud.

5

Cambios de bases: Teorema de la división.

¿Para qué queremos el cambio de base?

Para convertir una magnitud de una representación que nos resulta

natural (base 10) a la forma en que representan y almacenan los

datos en la computadora (base 2).

6

Cambios de bases: Teorema de la división.

La división eucĺıdea, llamada también teorema o algoritmo de

la división va a vincular una magnitud a y una base b diciendo que

hay un único cociente y resto que permiten escribir la magnitud a

en base al valor b.

Nos valemos de esto para aplicar operaciones sucesivas que

descompongan a en base a valores bn, bn−1, . . . , b1, sabiendo que

estos bi se relacionan con el śımbolo âi que va en la posición i

cuando queremos hacer el cambio de base: a→ â.

7

Cambios de bases: Teorema de la división.

Teorema:
Sean a, b ∈ Z con b ̸= 0.

Existen q, r ∈ Z con 0 ≤ r < |b|
tales que a = b × q + r

Además, q y r son únicos (de a pares).

¿Cómo lo usamos ?

a = b × q + r

a = (b × q1 + r1)× b + r

a = [(b × q2 + r2)× b + r1]× b + r

Podemos continuar con la expansión hasta que qN < b

a = {[(b × qN + rN)× b) + rN−1]× ...} × b + r × 1

Si distribuimos va a quedar:

a = qN × bN+1 + rN × bN + ...+ r1 × b + r × b0

8

Cambios de bases: Teorema de la división.

Representación posicional:
Podemos ver que el primer elemento de cada producto es el que va

a aparecer en los d́ıgitos de nuestra representación posicional,

donde:

a = qN × bN+1 + rN × bN + ...+ r1 × b + r × b0

Se puede escribir como:

qN rN . . . r1 r

O de forma correcta, incluyendo la base:

(qN rN . . . r1r)(b)

9

Cambios de bases: Teorema de la división.

Ejemplo:

27 = 2 · 101 + 7 · 100 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

27 = (27)(10) = (11011)(2)

Ejercitación
Escribir los siguientes números en binario, octal y hexadecimal.

• diez

• quinientos doce

10

Representación de la información

Representación finita

Cuando pensamos en los números y cuando los escribimos en la

vida diaria, no contamos con una restricción evidente en la

cantidad de d́ıgitos con los que podemos operar. Pero en un

soporte electrónico, como resulta ser el caso de la computadora,

cada dato se representa con una cantidad finita de elementos. En

el caso de los números podemos pensar que lo que está acotado

es la cantidad de d́ıgitos que podemos emplear. Cada d́ıgito

va a poder tener tantos valores distintos como tenga la base.

En base 10 son 10 valores distintos, del 0 al 9, en base 2 son dos

que van del 0 al 1.

11

Rango de representación

El rango de representación viene asociado al tipo de dato, hasta

ahora vimos números naturales (N0), y a la cantidad de d́ıgitos que

podemos escribir. Por ahora la forma de computar el rango es

aplicando el cálculo de combinaciones cruzadas, por ejemplo una

tira de 4 d́ıgitos:

(a3a2a1a0)(b)

Donde cada d́ıgito puede tener valores entre 0 y b − 1, tiene un

rango igual a:

b × b × b × b = b4

12

Rango de representación

b × b × b × b = b4

Por ejemplo, si representamos nuestros datos como naturales de

ocho d́ıgitos en base 2 tendremos:

2× 2× 2× 2× 2× 2× 2× 2 = 28 = 256

Esto luego se conocerá como el rango de un entero sin signo en 8

bits, y va del 0 al 255.

13

Overflow

Si una magnitud a representar cae fuera del rango de

representación, tenemos una situación que se conoce como

overflow (desborde), ya que no hay forma de representarla en

formato actual. Por ejemplo, para los ocho d́ıgitos de base dos del

ejemplo, la magnitud 27 es representable:

27 = (00011011)(2)

Noten que completamos con 0 los d́ıgitos a izquierda para escribir

los ocho elementos de nuestra representación finita. Ahora, la

magnitud 770 no es representable por quedar fuera del rango

overflow:

770 = (1100000010)(2)

Precisamos 10 d́ıgitos como ḿınimo para representar la magnitud

en base 2.
14

Tipos de datos

Hasta este punto vimos cómo

• Representar números naturales (N0)

• Interpretar una base númerica y realizar cambios de base

Los datos tienen su información asociada y su tipo de dato. En

el caso que se presentó la información asociada son los valores

de cada d́ıgito y el tipo de dato seŕıan los naturales acotados.

El tipo nos indica cómo interpretar la información, en este caso

cómo vincular el dato con una magnitud y qué operaciones

podemos realizar con ella.

15

Tipos numéricos

Vamos a utilizar los siguientes tipos de datos para representar

números naturales y enteros, todos a partir de la representación en

base 2 (binaria), a saber:

• Sin signo
representa únicamente números positivos

• Signo + Magnitud

se usa el primer d́ıgito (bit) para indicar el signo de la magnitud

• Exceso m

Represento n como m + n.

De esta manera, estamos desplazando la ubicación de la magnitud

asociada al cero del comienzo del rango de representación a la

posición m. Los valores a izquierda de m serán interpretados como

negativos

16

Tipos numéricos

Veamos ejemplos con rangos de representación para datos de 3

bits. El rango es:

v0 v1 v2 v3 v4 v5 v6 v7

Los datos del rango son siempre iguales, lo que va a cambiar van a

ser las magnitudes asociadas a cada elemento (cómo los

interpretamos). Los datos son:

v0 v1 v2 v3 v4 v5 v6 v7

000 001 010 011 100 101 110 111

17

Tipos numéricos

Las magnitudes asociadas al rango serán:

Posición v0 v1 v2 v3 v4 v5 v6 v7

Dato 000 001 010 011 100 101 110 111

Sin signo 0 1 2 3 4 5 6 7

Signo+magnitud 0 1 2 3 −0 −1 −2 −3

Exceso m(m=2) −2 −1 0 1 2 3 4 5

Noten que para signo+magnitud hay dos datos asociados al cero

(el valor está desnormalizado).

18

Codificando números enteros en base binaria

• Complemento a 2

• Los positivos se representan igual.

• Para los números negativos la forma práctica de saber la

forma en que vamos a representarlos es la siguiente: Si n

es la magnitud a representar y d3d2d1d0 los cuatro d́ıgitos para

representarlo en 4 bits, lo que haremos es invertir los bits de a

uno (cambiar unos por ceros y ceros por unos) y sumar uno.

• Por ejemplo −4 se representa como inv(4) + 1, en 5 bits seŕıa:

inv(01000) + 1 = 10111 + 1 = 11000.

19

Codificando números enteros en base binaria

• Complemento a 2

• Los positivos se representan igual.

• Otra forma de pensarlo, para los números negativos lo que se

almacena es un complemento ṅ, a partir de:

ṅ = 2k(10) − n

Donde n es la magnitud interpretada,ṅ el dato almacenado y k

la cantidad de d́ıgitos (o bits) utilizados para representar al

número. O sea lo que guardamos es la resta entre el primer

número que se sale del rango y el valor absoluto de n. Esto

también equivale a restar la magnitud a cero y descartar el

acarreo.

20

Codificando números enteros en base binaria

ṅ = 2k(10) − n

• Ejemplo

Quiero representar el número −2(10) con k = 3 d́ıgitos binarios.

Entonces, 2k(10) → 2
3(10)
(10) = 8(10) = 1000(2)

Luego 2̇ = 1000(2) − 2(10) donde 2̇ es el complemento a 2 del

número.

Escribimos el 2 en la base correspondiente:

2̇ = 1000(2) − 2(10) → 2̇ = 1000(2) − 10(2).

Finalmente 2̇ = 110(2)

21

Codificando...

En base 2, datos de 4 bits
Signo + Magnitud Complemento a 2 Exceso a 15

3 0011 0011 OVERFLOW

-2 1010 1110 1101

-8 OVERFLOW 1000 0111

22

Codificando...(con más bits)

En base 2, datos de 8 bits
Signo + Magnitud Complemento a 2 Exceso a 15

3 0000 0011 0000 0011 0001 0010

-2 1000 0010 1111 1110 0000 1101

-8 1000 1000 1111 1000 0000 0111

23

Codificando...(con más bits)

Similitudes entre 4 y 8 bits

Signo + Magnitud Complemento a 2 Exceso a 15

3 0000 0011 0000 0011 0001 0010

-2 1000 0010 1111 1110 0000 1101

-8 1000 1000 1111 1000 0000 0111

Extendiendo la cantidad de bits de precisión:

• Signo + Magnitud: Se extiende con 0’s, pero el bit más

significativo se mantiene indicando el signo.

• Complemento a 2: Se extiende con el valor del bit más

significativo.

• Exceso a m: Se extiende siempre con 0’s.

24

Resumiendo: Enteros como numerales binarios

Sin Signo

Solo sirve para los positivos.

Numeral(dato) → número que representa

1111 → 15(10)
1110 → 14(10)
1101 → 13(10)
1100 → 12(10)
1011 → 11(10)
1010 → 10(10)
1001 → 9(10)
1000 → 8(10)

0111 → 7(10)
0110 → 6(10)
0101 → 5(10)
0100 → 4(10)
0011 → 3(10)
0010 → 2(10)
0001 → 1(10)
0000 → 0(10)

Para los numerales de 4 bits.

25

Resumiendo: Enteros como numerales binarios

Signo+Magnitud

El primer bit es el signo, los demás son el significado (la magnitud

del número en valor absoluto).

numeral → número que representa

1111 → −7(10)
1110 → −6(10)
1101 → −5(10)
1100 → −4(10)
1011 → −3(10)
1010 → −2(10)
1001 → −1(10)
1000 → −0(10)

0111 → 7(10)
0110 → 6(10)
0101 → 5(10)
0100 → 4(10)
0011 → 3(10)
0010 → 2(10)
0001 → 1(10)
0000 → 0(10)

Para los numerales de 4 bits.

26

Resumiendo: Enteros como numerales binarios

Complemento a dos

Los numerales que representa positivos son iguales a los anteriores

Para los negativos, dado un ṅ negativo se representan escribiendo

2k − n en notación sin signo

cuentas → numeral → número que representa

24 + (−1) = 15→ 1111 → −1(10)
24 + (−2) = 14→ 1110 → −2(10)
24 + (−3) = 13→ 1101 → −3(10)
24 + (−4) = 12→ 1100 → −4(10)
24 + (−5) = 11→ 1011 → −5(10)
24 + (−6) = 10→ 1010 → −6(10)
24 + (−7) = 9 → 1001 → −7(10)
24 + (−8) = 8 → 1000 → −8(10)

0111 → 7(10)
0110 → 6(10)
0101 → 5(10)
0100 → 4(10)
0011 → 3(10)
0010 → 2(10)
0001 → 1(10)
0000 → 0(10)

Para los numerales de 4 bits.

27

Resumiendo: Enteros como numerales binarios

Exceso a m

El número n se representa como m + n

cuentas → numeral → número que representa

5 + (10) = 15→ 1111 → 10(10)
5 + (9) = 14 → 1110 → 9(10)
5 + (8) = 13 → 1101 → 8(10)
5 + (7) = 12 → 1100 → 7(10)
5 + (6) = 11 → 1011 → 6(10)
5 + (5) = 10 → 1010 → 5(10)
5 + (4) = 9 → 1001 → 4(10)
5 + (3) = 8 → 1000 → 3(10)

5 + (2) = 7 → 0111 → 2(10)
5 + (1) = 6 → 0110 → 1(10)
5 + (0) = 5 → 0101 → 0(10)
5 + (−1) = 4→ 0100 → −1(10)
5 + (−2) = 3→ 0011 → −2(10)
5 + (−3) = 2→ 0010 → −3(10)
5 + (−4) = 1→ 0001 → −4(10)
5 + (−5) = 0→ 0000 → −5(10)

Para los numerales de 4 bits en exceso 5.

28

Leyendo datos

Para interpretar un valor, o sea una tira de valores binarios o

bits, es necesario conocer su tipo. Tipos distintos para un

mismo valor determinan (potencialmente) distintas

magnitudes.

29

Transformando los datos

Operaciones aritmético-lógicas

Vamos a presentar algunas operaciones aritméticas y lógicas en

base 2, en particular o lógico, y lógico, xor lógico, negación

lógica, desplazamientos, suma, resta y multiplicación. Todas

las operaciones van a estar asociadas a un algoritmo de resolución,

del mismo modo que utilizamos uno para realizar cuentas en base

10 en la vida cotidiana.

30

Propiedades de los datos y las operaciones

Es importante comprender que hay atributos que nos interesa

observar tanto de los datos como de las operaciones. Por

ejemplo:

• De los datos numéricos si son negativos o pares

• De las operaciones si los resultados se mantienen dentro del

rango de representación

31

Propiedades de los datos

Veamos como observar el dato nos permite determinar propiedades
del valor representado. Por ejemplo, en complemento a 2 de un
dato de 4 bits:

Posición v3 v2 v1 v0

Interpretación signo x x paridad

Negativo 1 x x x

Par x x x 0

32

Operaciones lógicas

Las operaciones lógicas que veremos pueden involucrar a uno o dos

operandos, se aplican sobre el dato almacenado, o sea los bits

del valor representado.

Las presentamos rápidamente y una por una.

33

O lógico

El o logico o disyunción se aplica bit a bit. La operación a ∨ b = c

se puede describir atómicamente (por cada elemento indivisible)

como ci = ai ∨ bi . Veamos un ejemplo de 4 bits, noten que la

aplicación no depende del tipo de dato, lo trata indistintamente:

Posición v3 v2 v1 v0

a 1 0 1 0

b 0 0 1 1

c = a ∨ b 1 0 1 1

34

Nota

Podemos notar que las operaciones lógicas se aplican bit a bit:

Posición v3 v2 v1 v0

a 1 0 1 0

+ + + +

b 0 0 1 1

↓ ↓ ↓ ↓
c = a ∨ b 1 0 1 1

Es posible encontrar al signo + para representar la disyunción,

porque equivale a una suma sin acarreo en bits. Lo mismo sucede

entre la conjunción y el signo ∗.

35

Y lógico

El y lógico se aplica bit a bit. La operación a ∧ b = c se puede

describir atómicamente (por cada elemento indivisible) como

ci = ai ∧ bi . Veamos un ejemplo de 4 bits:

Posición v3 v2 v1 v0

a 1 0 1 0

b 0 0 1 1

c = a ∧ b 0 0 1 0

36

Xor lógico

El xor lógico se aplica bit a bit. La operación a ⊻ b = c se puede

describir atómicamente (por cada elemento indivisible) como

ci = (ai ∧ ¬bi) ∨ (¬ai ∧ bi), exactamente uno de los bits vale 1.

Veamos un ejemplo de 4 bits:

Posición v3 v2 v1 v0

a 1 0 1 0

b 0 0 1 1

c = a ⊻ b 1 0 0 1

37

Negación lógica

La negación lógica se aplica bit a bit. La operación ¬a = c se

puede describir atómicamente (por cada elemento indivisible) como

ci = ¬ai , dando vuelta los valores de cada elemnto. Veamos un

ejemplo de 4 bits:

Posición v3 v2 v1 v0

a 1 0 1 0

c = ¬a 0 1 0 1

38

Desplazamiento a izquierda

El desplazamiento a izquierda se aplica desplazando los bits del

dato tantas posiciones como se indiquen a izquierda. La operación

a≪ n = c para un dato de k bits se puede describir atómicamente

como ci = ai−n si i ≤ k − n − 1 y 0 en caso contrario. Veamos un

ejemplo de 4 bits:

Posición v3 v2 v1 v0

a 1 0 1 0

c = a ≪ 2 1 0 0 0

39

Desplazamiento lógico a derecha

El desplazamiento lógico a derecha se aplica desplazando los

bits del dato tantas posiciones como se indiquen a derecha. La

operación a≫l n = c para un dato de k bits se puede describir

atómicamente como ci = ai+n si i ≥ n y 0 en caso contrario.

Veamos un ejemplo de 4 bits:

Posición v3 v2 v1 v0

a 1 0 1 0

c = a ≫l 2 0 0 1 0

40

Desplazamiento aritmético a derecha

El desplazamiento aritmético a derecha se aplica desplazando

los bits del dato tantas posiciones como se indiquen a derecha,

pero copiando el valor del bit más significativo de origen en los

valores vacantes del resultado. La operación a≫a n = c para un

dato de k bits se puede describir atómicamente como ci = ai+n si

i ≥ n y ak−1 en caso contrario. Veamos un ejemplo de 4 bits:

Posición v3 v2 v1 v0

a 1 0 1 0

c = a ≫a 2 1 1 1 0

41

Desplazamiento a derecha, observaciones

¿Por qué existe una diferencia entre el desplazamiento a derecha

lógico y aritmético? La aplicación de una operación lógica puede

tener muchos motivos, pero en particular el desplazamiento a

derecha o izquierda en n posiciones tiene el efecto de multiplicar

o dividir por 2n el valor representado, siempre que se trate de

un entero sin signo o en complemento a dos.

42

Desplazamiento a derecha, ejercicio

Si a es un valor representado en complemento a dos, ¿cuándo

valen las siguientes propiedades?

a≫l n = a/2n

a≫a n = a/2n

Ejercicio para la casa.

43

Adición Binaria

Para realizar operaciones aritméticas como la suma, la resta o la

multiplicación, podemos intentar utilizar dos conceptos

importantes, por un lado el razonamiento composicional y por el

otro un análisis extensivos de los casos. El primero tiene que ver

con tratar de resolver la suma representada en base 2 a partir de

cada d́ıgito (descomposición) y el segundo con construir una tabla

que calcule todos los resultados posibles para sumas de un d́ıgito

en base 2 (análisis extensivo).

44

Adición Binaria

Veamos que puede suceder cuando sumamos dos d́ıgitos

cualesquiera en base dos:

ai bi ai + bi

0 0 0

0 1 1

1 0 1

1 1 10

Podemos notar que la última fila produce un resultado que no se

puede representar con un sólo d́ıgito. Para el caso atómico (de un

único d́ıgito) ese 1 va conocerse como carry o acarreo porque va a

afectar la suma del d́ıgito inmediato a izquierda.

45

Adición Binaria

Redefinimos el resultado, diviendo ai + bi entre el resto ri y su

acarreo ci :

ai bi ci ri

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

46

Adición Binaria

Podemos extender la suma, para tener en cuenta el hecho de que
quizás el d́ıgito inmediato a derecha produjo acarreo en su suma,
donde ci es el carry (acarreo) del d́ıgito anterior:

ai bi ci−1 ci ri

0 0 0 0 0

0 1 0 0 1

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 1 1 1

47

Adición Binaria

Con esto ya podemos definir la adición binaria para dos números a

y b sin signo de n d́ıgitos de la siguiente forma:

carry : cn−1 cn−2 . . . c0

a : − an−1 . . . a1 a0

b : − bn−1 . . . b1 b0

a+ b : cn−1 rn−1 . . . r1 r0

Aqúı cn es lo que consideramos el acarreo de la suma, y se puede

interpretar como un indicador o flag de la propiedad de desborde

de la operación, ya que el resultado no es representable en n bits.

48

Ejemplo de la suma

En decimal En base 3

8 4 5

+ 3 4 2

1 1 8 7

2 1 2

+ 1 0 1

1 0 2 0

49

Resta Binaria

Podemos definir equivalentemente la resta binaria para dos

números a y b sin signo de n d́ıgitos de la siguiente forma:

borrow : bn−1 bn−2 . . . b0

a : − an−1 . . . a1 a0

b : − bn−1 . . . b1 b0

a− b : bn−1 rn−1 . . . r1 r0

Aqúı bn es lo que consideramos el préstamo o borrow de la resta.

En este caso el borrow se produce cuando el sustraendo es mayor

que el minuendo, por lo tanto, se debe “pedir” al d́ıgito adyacente.

50

Resta y multiplicación

Como tarea para el hogar, intenten describir primero la operación

de resta, aplicando descomposición y análisis extensivo de los casos

a partir de la resta de a un d́ıgito de números enteros sin signo.

Y luego expliquen cómo debeŕıa resolverse la multiplicación entre

dos números de n bits sin signo, no es necesario que se restrinjan a

la descomposición y al análisis extensivo, pueden suponer que se

puede computar un resultado final a partir del cómputo de

resultados parciales.

51

Técnicas de uso corriente

¿Cómo pasamos rápido de decimal a binario?

Pasar el número 28 y a binario.

Si hacemos divisiones

sucesivas:
28 / 2 = 14 Resto = 0

14 / 2 = 7 Resto = 0

7 / 2 = 3 Resto = 1

3 / 2 = 1 Resto = 1
Quedando aśı el número

11100.

Otra aproximación.

Busco 2x ≥ 28 → 5, ya

que 25 = 32. Necesitaré 5

d́ıgitos

Sabemos:

x1 ∗ 24 + x2 ∗ 23 + x3 ∗
22 + x4 ∗ 21 + x5 ∗ 20

1 1 1 0 0

52

¿Cómo pasamos rápido de binario a hexa?

Pasar el número 10101100

• ¿Cuánto elementos puedo representar con un d́ıgito

hexadecimal?

• 16

• Luego es potencia de 2 directo, 24

• o sea puedo separarlos de a 4:
1010 1100

A C

¿Y para pasar de hexadecimal a binario?

¿Y para pasar a complemento a 2? Hay que hacer la gúıa...

53

Sobre el Overflow y el Carry...

El truco para detectar un overflow es observar que si el bit de signo

es igual en ambos operandos (ambos positivos o negativos) el

resultado de la suma debeŕıa preservar el signo (suma de positivos

produce un positivo, suma de negativos produce un negativo).

overflow ⇐⇒ ((an−1 = bn−1) ∧ (an−1 ̸= cn−1))

54

Sobre el Overflow y el Carry...

Algunos ejemplos para pensar en C2 (complemento a 2)...

5− 3 = 5 + (−3) = 2

0 1 0 1

+ 1 1 0 1

1 0 0 1 0

(C ← C)

OK!

−5− 3 = (−5) + (−3) = (−8)
1 0 1 1

+ 1 1 0 1

1 1 0 0 0

(C ← C)

OK!

−5− 4 = (−5) + (−4) = −9
1 0 1 1

+ 1 1 0 0

1 0 1 1 1

(C ← C)

OVERFLOW!

5 + 4 = 9

0 1 0 1

+ 0 1 0 0

0 1 0 0 1

(C ← C)

OVERFLOW!

55

Sobre el Overflow y el Carry...

Noten que el overflow y el carry son propiedades de una

operación, a diferencia de la paridad o el signo, que son

propiedades de un dato aislado. Para determinar si se cumple una

propiedad de una operación, puede ser necesario observar tanto los

operandos como el resultado (caso del overflow).

56

Cierre

Repaso de la clase

Resumen de la clase práctica del d́ıa de la fecha.

• Motivación, caracteŕısticas y necesidad de contar con un

sistema de representación de la información sobre un soporte

dado. Representación numérica en base 2.

• Formas de representar tipos numéricos, naturales (sin

signo), enteros (signo+magnitud, exceso m,

complemento a 2) y vistazo de racionales(IEEE 754).

• Operaciones lógico-aritméticas utilizadas para transformar la

información (o lógico, y lógico, xor lógico, negación

lógica, desplazamientos, suma, resta y multiplicación)y

sus propiedades asociadas (carry y overflow).

57

Próximas clases

• ¡Ya se puede hacer la práctica 1 completa!.

• Circuitos Combinatorios.

• Circuitos Secuenciales.

58

Cierre

Pasamos a las preguntas.

59

Lógica Digital - Circuitos Combinatorios

Primer Cuatrimestre 2025

Sistemas Digitales

DC - UBA

1

Repaso: Algebra de Boole

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X = 1 si X ̸= 0 ó X = 0 si X ̸= 1

(A2) Existe el operador negación () tal que: Si X = 1 ⇒ X = 0

(A3) 0 · 0 = 0 1 + 1 = 1

(A4) 1 · 1 = 1 0 + 0 = 0

(A5) 0 · 1 = 1 · 0 = 0 0 + 1 = 1 + 0 = 1

2

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X = 1 si X ̸= 0 ó X = 0 si X ̸= 1

(A2) Existe el operador negación () tal que: Si X = 1 ⇒ X = 0

(A3) 0 · 0 = 0 1 + 1 = 1

(A4) 1 · 1 = 1 0 + 0 = 0

(A5) 0 · 1 = 1 · 0 = 0 0 + 1 = 1 + 0 = 1

2

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X = 1 si X ̸= 0 ó X = 0 si X ̸= 1

(A2) Existe el operador negación () tal que: Si X = 1 ⇒ X = 0

(A3) 0 · 0 = 0 1 + 1 = 1

(A4) 1 · 1 = 1 0 + 0 = 0

(A5) 0 · 1 = 1 · 0 = 0 0 + 1 = 1 + 0 = 1

2

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X = 1 si X ̸= 0 ó X = 0 si X ̸= 1

(A2) Existe el operador negación () tal que: Si X = 1 ⇒ X = 0

(A3) 0 · 0 = 0 1 + 1 = 1

(A4) 1 · 1 = 1 0 + 0 = 0

(A5) 0 · 1 = 1 · 0 = 0 0 + 1 = 1 + 0 = 1

2

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X = 1 si X ̸= 0 ó X = 0 si X ̸= 1

(A2) Existe el operador negación () tal que: Si X = 1 ⇒ X = 0

(A3) 0 · 0 = 0 1 + 1 = 1

(A4) 1 · 1 = 1 0 + 0 = 0

(A5) 0 · 1 = 1 · 0 = 0 0 + 1 = 1 + 0 = 1

2

Axiomas

Partimos de las siguientes proposiciones (axiomas):

(A1) Existen dos elementos: X = 1 si X ̸= 0 ó X = 0 si X ̸= 1

(A2) Existe el operador negación () tal que: Si X = 1 ⇒ X = 0

(A3) 0 · 0 = 0 1 + 1 = 1

(A4) 1 · 1 = 1 0 + 0 = 0

(A5) 0 · 1 = 1 · 0 = 0 0 + 1 = 1 + 0 = 1

2

Propiedades

De los axiomas anteriores se derivan las siguientes propiedades:

Propiedad AND OR

Identidad 1.A = A 0 + A = A

Nulo 0.A = 0 1 + A = 1

Idempotencia A.A = A A+ A = A

Inverso A.A = 0 A+ A = 1

Conmutatividad A.B = B.A A+ B = B + A

Asociatividad (A.B).C = A.(B.C) (A+ B) + C = A+ (B + C)

Distributividad A+ (B.C) = (A+ B).(A+ C) A.(B + C) = A.B + A.C

Absorción A.(A+ B) = A A+ A.B = A

De Morgan A.B = A+ B A+ B = A.B

Tarea: ¡Demostrarlas!

3

Propiedades

De los axiomas anteriores se derivan las siguientes propiedades:

Propiedad AND OR

Identidad 1.A = A 0 + A = A

Nulo 0.A = 0 1 + A = 1

Idempotencia A.A = A A+ A = A

Inverso A.A = 0 A+ A = 1

Conmutatividad A.B = B.A A+ B = B + A

Asociatividad (A.B).C = A.(B.C) (A+ B) + C = A+ (B + C)

Distributividad A+ (B.C) = (A+ B).(A+ C) A.(B + C) = A.B + A.C

Absorción A.(A+ B) = A A+ A.B = A

De Morgan A.B = A+ B A+ B = A.B

Tarea: ¡Demostrarlas!

3

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Ejercicio 0

Demostrar si la siguiente igualdad entre funciones booleanas es

verdadera o falsa:

(X + Y) = (X · Y) · Z + X · Z + (Y + Z)

Solución:

(X · Y) · Z + X · Z + (Y + Z)←− De Morgan

(X · Y) · Z + X · Z + Y · Z ←− Distributiva

(X · Y) · Z + (X + Y) · Z ←− De Morgan

(X + Y) · Z + (X + Y) · Z ←− Distributiva

(X + Y) · (Z + Z)←− Inverso

(X + Y) · 1←− Identidad

X + Y Lo que queŕıamos demostrar.

4

Notación

En el lenguaje coloquial vamos a llamar a las operaciones

indistintamente de la siguiente forma:

A+ B ≡ A OR B

AB ≡ A.B ≡ A AND B

A ≡ NOT A

5

Notación

En el lenguaje coloquial vamos a llamar a las operaciones

indistintamente de la siguiente forma:

A+ B ≡ A OR B

AB ≡ A.B ≡ A AND B

A ≡ NOT A

5

Notación

En el lenguaje coloquial vamos a llamar a las operaciones

indistintamente de la siguiente forma:

A+ B ≡ A OR B

AB ≡ A.B ≡ A AND B

A ≡ NOT A

5

Compuertas, señales y tablas de

verdad

Compuertas

Son modelos idealizados de dispositivos electrónicos o de

computo, que realizan operaciones booleanas.

Las podemos representar gráficamente:

O describir mediante un lenguaje de descripción de hardware

(HDL), por ejemplo en SystemVerilog:

ass ign o = a & b ;

6

Compuertas

Son modelos idealizados de dispositivos electrónicos o de

computo, que realizan operaciones booleanas.

Las podemos representar gráficamente:

O describir mediante un lenguaje de descripción de hardware

(HDL), por ejemplo en SystemVerilog:

ass ign o = a & b ;

6

Tablas de verdad

Son representaciones que nos permiten observar todas las

salidas para todas las combinaciones de entradas1.

Por ejemplo, la función del ejercicio (F = X + Y) se representa:

X Y F

0 0

1

0 1

0

1 0

1

1 1

1

1
Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y

salidas crece.

7

Tablas de verdad

Son representaciones que nos permiten observar todas las

salidas para todas las combinaciones de entradas1.

Por ejemplo, la función del ejercicio (F = X + Y) se representa:

X Y F

0 0 1

0 1

0

1 0

1

1 1

1

1
Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y

salidas crece.

7

Tablas de verdad

Son representaciones que nos permiten observar todas las

salidas para todas las combinaciones de entradas1.

Por ejemplo, la función del ejercicio (F = X + Y) se representa:

X Y F

0 0 1

0 1 0

1 0

1

1 1

1

1
Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y

salidas crece.

7

Tablas de verdad

Son representaciones que nos permiten observar todas las

salidas para todas las combinaciones de entradas1.

Por ejemplo, la función del ejercicio (F = X + Y) se representa:

X Y F

0 0 1

0 1 0

1 0 1

1 1

1

1
Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y

salidas crece.

7

Tablas de verdad

Son representaciones que nos permiten observar todas las

salidas para todas las combinaciones de entradas1.

Por ejemplo, la función del ejercicio (F = X + Y) se representa:

X Y F

0 0 1

0 1 0

1 0 1

1 1 1

1
Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y

salidas crece.

7

Compuertas - NOT

Gráficamente:

Tabla de verdad:

A NOT A

0 1

1 0

En SystemVerilog:

ass ign o = ˜a ; 8

Compuertas - AND

Gráficamente:

Tabla de verdad:

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

En SystemVerilog:

ass ign o = a & b ;
9

Compuertas - OR

Gráficamente:

Tabla de verdad:

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

En SystemVerilog:

ass ign o = a | b ;
10

Compuertas - XOR u OR-EXCLUSIVA

Gráficamente:

Tabla de verdad:

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

En SystemVerilog:

ass ign o = a ˆ b ;
11

Entradas y salidas - Categorización

Distintas vistas de un circuito

Por momentos vamos a querer abstraer nuestros circuitos en

módulos de los cuales observaremos solamente sus entradas y

salidas. Veamos un ejemplo donde ocultamos parte de la

complejidad pasando de una vista interna del circuito (caja blanca)

a una externa (caja negra).

12

Desde el museo: ALU 74181

13

Ejemplo con una ALU

Aplicando lo anterior, podemos trabajar con la ALU viéndola de la

siguiente manera:

14

Entradas/Salidas

Establecen el sentido de la información:

En la ALU anterior se representan con las flechas...

En SystemVerilog:

module ALU #(parameter DATA WIDTH = 16)

(input [DATA WIDTH−1:0] operandoZ ,

input [DATA WIDTH−1:0] operandoY ,

input [2 : 0] opcode ,

output [DATA WIDTH−1:0] s a l i d a s ,

output o v e r f l ow) ;

end module ;

15

Entradas/Salidas

Establecen el sentido de la información:

En la ALU anterior se representan con las flechas...

En SystemVerilog:

module ALU #(parameter DATA WIDTH = 16)

(input [DATA WIDTH−1:0] operandoZ ,

input [DATA WIDTH−1:0] operandoY ,

input [2 : 0] opcode ,

output [DATA WIDTH−1:0] s a l i d a s ,

output o v e r f l ow) ;

end module ;

15

Entradas/Salidas: Tipos

En la ALU, ¿son funcionalmente todas iguales las entradas y

salidas?

NO

Datos vs. Control

16

Entradas/Salidas: Tipos

En la ALU, ¿son funcionalmente todas iguales las entradas y

salidas?

NO

Datos vs. Control

16

Lógica proposicional a circuitos

combinatorios

Motivación

El estudio de la lógica proposicional y del álgebra de Boole tiene

que ver con que vamos a querer implementar funciones lógicas en

nuestro soporte electrónico con circuitos combinatorios.

17

Traduciendo una fórmula

Sabemos que se puede describir el comportamiento de un circuito

combinatorio construyendo una tabla de verdad que determine las

salidas que corresponden a cada combinación de los valores de

entrada. Vamos a utilizar esto para describir un procedimiento que

nos permite construir un circuito combinatorio cuyo

comportamiento implementa cualquier fórmula proposicional φ.

18

Traduciendo una fórmula

Habrá casos en los que nos resultará dif́ıcil derivar un circuito de la

fórmula, ya sea porque no vemos un v́ınculo directo entre la

expresión y las compuertas básicas, o porque es conveniente

expresarlo con una tabla de verdad.

19

Mecanismo de traducción

El mecanismo es el siguiente:

• Si tenemos una fórmula φ que se expresa en función de las

variables x1, . . . , xn(las entradas).

• Construimos una tabla de verdad con una fila para cada

combinación posible de las entradas (por ej.

x1 → 1, x2 → 0, . . . , xn → 1) y en la columna de la salida y

ingresamos el valor de la fórmula evaluada en esos valores

φ(1, 0, . . . , 1).

20

Mecanismo de traducción

El mecanismo es el siguiente:

• Si tenemos una fórmula φ que se expresa en función de las

variables x1, . . . , xn(las entradas).

• Construimos una tabla de verdad con una fila para cada

combinación posible de las entradas (por ej.

x1 → 1, x2 → 0, . . . , xn → 1) y en la columna de la salida y

ingresamos el valor de la fórmula evaluada en esos valores

φ(1, 0, . . . , 1).

20

Mecanismo de traducción

El mecanismo es el siguiente:

• Si tenemos una fórmula φ que se expresa en función de las

variables x1, . . . , xn(las entradas).

• Construimos una tabla de verdad con una fila para cada

combinación posible de las entradas (por ej.

x1 → 1, x2 → 0, . . . , xn → 1) y en la columna de la salida y

ingresamos el valor de la fórmula evaluada en esos valores

φ(1, 0, . . . , 1).

20

Mecanismo de traducción

El mecanismo es el siguiente:

• Vamos a utilizar solamente las filas en las que la función vale

1.

• Para cada fila i en la que φ es verdadera (vale 1) vamos a

construir un término ti como conjunción (y lógico o AND) de

todas las entradas, donde cada variable aparece negada si su

valor era 0 en la fila y sin negar en caso contrario.

• Por ejemplo, si en la fila 4 la asignación (valuación) de las

variables era x1 → 1, x2 → 0, . . . , xn → 1, t4 va a ser

x1 ∧ ¬x1 ∧ . . . ∧ xn.

21

Mecanismo de traducción

El mecanismo es el siguiente:

• Vamos a utilizar solamente las filas en las que la función vale

1.

• Para cada fila i en la que φ es verdadera (vale 1) vamos a

construir un término ti como conjunción (y lógico o AND) de

todas las entradas, donde cada variable aparece negada si su

valor era 0 en la fila y sin negar en caso contrario.

• Por ejemplo, si en la fila 4 la asignación (valuación) de las

variables era x1 → 1, x2 → 0, . . . , xn → 1, t4 va a ser

x1 ∧ ¬x1 ∧ . . . ∧ xn.

21

Mecanismo de traducción

El mecanismo es el siguiente:

• Vamos a utilizar solamente las filas en las que la función vale

1.

• Para cada fila i en la que φ es verdadera (vale 1) vamos a

construir un término ti como conjunción (y lógico o AND) de

todas las entradas, donde cada variable aparece negada si su

valor era 0 en la fila y sin negar en caso contrario.

• Por ejemplo, si en la fila 4 la asignación (valuación) de las

variables era x1 → 1, x2 → 0, . . . , xn → 1, t4 va a ser

x1 ∧ ¬x1 ∧ . . . ∧ xn.

21

Mecanismo de traducción

El mecanismo es el siguiente:

• Vamos a utilizar solamente las filas en las que la función vale

1.

• Para cada fila i en la que φ es verdadera (vale 1) vamos a

construir un término ti como conjunción (y lógico o AND) de

todas las entradas, donde cada variable aparece negada si su

valor era 0 en la fila y sin negar en caso contrario.

• Por ejemplo, si en la fila 4 la asignación (valuación) de las

variables era x1 → 1, x2 → 0, . . . , xn → 1, t4 va a ser

x1 ∧ ¬x1 ∧ . . . ∧ xn.

21

Mecanismo de traducción

El mecanismo es el siguiente:

• Una vez que tenemos los términos ti , tj , . . . para cada fila en

la que la función vale 1, vamos a hacer una disyunción (o

lógico u OR) de todos los términos φ′ = ti ∨ tj ∨

• A este mecanismo se lo conoce como suma de productos y

nos da una expresión de φ o de la tabla de verdad que puede

traducirse fácilmente a un circuito combinatorio.

22

Mecanismo de traducción

El mecanismo es el siguiente:

• Una vez que tenemos los términos ti , tj , . . . para cada fila en

la que la función vale 1, vamos a hacer una disyunción (o

lógico u OR) de todos los términos φ′ = ti ∨ tj ∨

• A este mecanismo se lo conoce como suma de productos y

nos da una expresión de φ o de la tabla de verdad que puede

traducirse fácilmente a un circuito combinatorio.

22

Mecanismo de traducción

El mecanismo es el siguiente:

• Una vez que tenemos los términos ti , tj , . . . para cada fila en

la que la función vale 1, vamos a hacer una disyunción (o

lógico u OR) de todos los términos φ′ = ti ∨ tj ∨

• A este mecanismo se lo conoce como suma de productos y

nos da una expresión de φ o de la tabla de verdad que puede

traducirse fácilmente a un circuito combinatorio.

22

Volviendo al ejemplo

La fórmula (F = X + Y) se representa:

X Y F

0 0 1

0 1 0

1 0 1

1 1 1

En este caso los términos seŕıan t1 = ¬x ∧ ¬y ,t3 = x ∧ ¬y y

t4 = x ∧ y y la expresión φ′ = (¬x ∧ ¬y) ∨ (x ∧ ¬y) ∨ (x ∧ y).

A esta expresión se conoce como suma de productos.

23

Volviendo al ejemplo

La fórmula (F = X + Y) se representa:

X Y F

0 0 1

0 1 0

1 0 1

1 1 1

En este caso los términos seŕıan t1 = ¬x ∧ ¬y ,t3 = x ∧ ¬y y

t4 = x ∧ y y la expresión φ′ = (¬x ∧ ¬y) ∨ (x ∧ ¬y) ∨ (x ∧ y).

A esta expresión se conoce como suma de productos.

23

Circuitos básicos

Ejercicio I - Sumador Simple

Armar un sumador de 1 bit. Tiene que tener dos entradas de un

bit y dos salidas, una para el resultado y otra para indicar si hubo o

no acarreo.

Solución

:

A B Sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

24

Ejercicio I - Sumador Simple

Armar un sumador de 1 bit. Tiene que tener dos entradas de un

bit y dos salidas, una para el resultado y otra para indicar si hubo o

no acarreo.

Solución:

A B Sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

24

Ejercicio I - Sumador Simple

Armar un sumador de 1 bit. Tiene que tener dos entradas de un

bit y dos salidas, una para el resultado y otra para indicar si hubo o

no acarreo.

Solución:

A B Sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

24

Ejercicio I - Sumador Simple

Armar un sumador de 1 bit. Tiene que tener dos entradas de un

bit y dos salidas, una para el resultado y otra para indicar si hubo o

no acarreo.

Solución:

A B Sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

24

Ejercicio II - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a

elección, arme un sumador completo. El mismo tiene 2 entradas

de 1 bit y una tercer entrada interpretada como CIn, tiene como

salida COut y S.

Solución:

Cin A B S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

25

Ejercicio II - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a

elección, arme un sumador completo. El mismo tiene 2 entradas

de 1 bit y una tercer entrada interpretada como CIn, tiene como

salida COut y S. Solución:

Cin A B S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

25

Ejercicio II - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a

elección, arme un sumador completo. El mismo tiene 2 entradas

de 1 bit y una tercer entrada interpretada como CIn, tiene como

salida COut y S. Solución:

Cin A B S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

25

Ejercicio II - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a

elección, arme un sumador completo. El mismo tiene 2 entradas

de 1 bit y una tercer entrada interpretada como CIn, tiene como

salida COut y S. Solución:

Cin A B S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

25

Ejercicio III - Shift

Armar un circuito de 3 bits. Este deberá mover a izquierda o a

derecha los bits de entrada de acuerdo al valor de una entrada

extra que actúa como control. En otras palabras, un shift izq-der

de k-bits es un circuito de k + 1 entradas (ek , ..., e0) y k salidas

(sk−1, ..., s0) que funciona del siguiente modo:

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Ejemplos:

shift lr(1,011) = 110 shift lr(0,011) = 001

shift lr(1,100) = 000 shift lr(1,101) = 010

26

Ejercicio III - Shift

Armar un circuito de 3 bits. Este deberá mover a izquierda o a

derecha los bits de entrada de acuerdo al valor de una entrada

extra que actúa como control. En otras palabras, un shift izq-der

de k-bits es un circuito de k + 1 entradas (ek , ..., e0) y k salidas

(sk−1, ..., s0) que funciona del siguiente modo:

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Ejemplos:

shift lr(1,011) = 110

shift lr(0,011) = 001

shift lr(1,100) = 000 shift lr(1,101) = 010

26

Ejercicio III - Shift

Armar un circuito de 3 bits. Este deberá mover a izquierda o a

derecha los bits de entrada de acuerdo al valor de una entrada

extra que actúa como control. En otras palabras, un shift izq-der

de k-bits es un circuito de k + 1 entradas (ek , ..., e0) y k salidas

(sk−1, ..., s0) que funciona del siguiente modo:

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Ejemplos:

shift lr(1,011) = 110 shift lr(0,011) = 001

shift lr(1,100) = 000 shift lr(1,101) = 010

26

Ejercicio III - Shift

Armar un circuito de 3 bits. Este deberá mover a izquierda o a

derecha los bits de entrada de acuerdo al valor de una entrada

extra que actúa como control. En otras palabras, un shift izq-der

de k-bits es un circuito de k + 1 entradas (ek , ..., e0) y k salidas

(sk−1, ..., s0) que funciona del siguiente modo:

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Ejemplos:

shift lr(1,011) = 110 shift lr(0,011) = 001

shift lr(1,100) = 000

shift lr(1,101) = 010

26

Ejercicio III - Shift

Armar un circuito de 3 bits. Este deberá mover a izquierda o a

derecha los bits de entrada de acuerdo al valor de una entrada

extra que actúa como control. En otras palabras, un shift izq-der

de k-bits es un circuito de k + 1 entradas (ek , ..., e0) y k salidas

(sk−1, ..., s0) que funciona del siguiente modo:

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Ejemplos:

shift lr(1,011) = 110 shift lr(0,011) = 001

shift lr(1,100) = 000 shift lr(1,101) = 010

26

Ejercicio III - Shift

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Solución:

s2 =

[
0 si e3 = 0

e1 si e3 = 1

]
s0 =

[
0 si e3 = 1

e1 si e3 = 0

]
s1 =

[
e0 si e3 = 1

e2 si e3 = 0

]

e3.e1 e3.e1 e3.e0 + e3.e2

27

Ejercicio III - Shift

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Solución:

s2 =

[
0 si e3 = 0

e1 si e3 = 1

]

s0 =

[
0 si e3 = 1

e1 si e3 = 0

]
s1 =

[
e0 si e3 = 1

e2 si e3 = 0

]

e3.e1 e3.e1 e3.e0 + e3.e2

27

Ejercicio III - Shift

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Solución:

s2 =

[
0 si e3 = 0

e1 si e3 = 1

]

s0 =

[
0 si e3 = 1

e1 si e3 = 0

]
s1 =

[
e0 si e3 = 1

e2 si e3 = 0

]

e3.e1

e3.e1 e3.e0 + e3.e2

27

Ejercicio III - Shift

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Solución:

s2 =

[
0 si e3 = 0

e1 si e3 = 1

]
s0 =

[
0 si e3 = 1

e1 si e3 = 0

]

s1 =

[
e0 si e3 = 1

e2 si e3 = 0

]

e3.e1

e3.e1 e3.e0 + e3.e2

27

Ejercicio III - Shift

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Solución:

s2 =

[
0 si e3 = 0

e1 si e3 = 1

]
s0 =

[
0 si e3 = 1

e1 si e3 = 0

]

s1 =

[
e0 si e3 = 1

e2 si e3 = 0

]

e3.e1 e3.e1

e3.e0 + e3.e2

27

Ejercicio III - Shift

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Solución:

s2 =

[
0 si e3 = 0

e1 si e3 = 1

]
s0 =

[
0 si e3 = 1

e1 si e3 = 0

]
s1 =

[
e0 si e3 = 1

e2 si e3 = 0

]

e3.e1 e3.e1

e3.e0 + e3.e2

27

Ejercicio III - Shift

• Si ek = 1, entonces si = ei−1 para todo 0 < i < k y s0 = 0

• Si ek = 0, entonces si = ei+1 para todo 0 ≤ i < k − 1 y

sk−1 = 0

Solución:

s2 =

[
0 si e3 = 0

e1 si e3 = 1

]
s0 =

[
0 si e3 = 1

e1 si e3 = 0

]
s1 =

[
e0 si e3 = 1

e2 si e3 = 0

]

e3.e1 e3.e1 e3.e0 + e3.e2

27

Ejercicio III - Shift

Solución:

28

Más combinatorios: Multiplexor y Demultiplexor

Las ĺıneas de control c permiten

seleccionar una de las entradas e, la que

corresponderá a la salida s.

Las ĺıneas de control c permiten

seleccionar cual de las salidas s tendrá

el valor de e.

29

Multiplexor y Demultiplexor

• Ejemplo,

30

Más combinatorios: Codificador y Decodificador

Cada combinación de las ĺıneas e

corresponderá a una sola ĺınea en alto

de la salida s.

Una y sólo una ĺınea en alto de e

corresponderá a una combinación en la

salida s.

31

Codificador y Decodificador

• Ejemplo,

32

Timing

Timing

¡Las compuertas no son instantáneas!

Revisitemos nuestro Shift LR:

33

Timing

Para el circuito Shift LR anterior, supongamos (de forma

optimista) que todas las compuertas tardan 10ps en poner un

resultado válido en sus salidas. A partir de ello, dibujemos el

diagrama de tiempos para cuando todas las entradas cambian

simultáneamente de ’0’ a ’1’.

34

Timing

Hagamos un diagrama de tiempos2:

2Y nombremos a las señales que no tienen nombre

35

Timing

Diagrama de tiempos

36

Timing

¿Cuál es el ḿınimo tiempo que se debe esperar para leer un

resultado válido de su salida?

• En un circuito combinatorio el tiempo que tarda la salida en

estabilizarse depende de la cantidad de capas de compuertas

(latencia)

• En este caso debemos esperar al menos 3 · 10ps = 30ps para

poder leer la salida.

¿Cómo enfrentamos este problema?

Secuenciales...

37

Timing

¿Cuál es el ḿınimo tiempo que se debe esperar para leer un

resultado válido de su salida?

• En un circuito combinatorio el tiempo que tarda la salida en

estabilizarse depende de la cantidad de capas de compuertas

(latencia)

• En este caso debemos esperar al menos 3 · 10ps = 30ps para

poder leer la salida.

¿Cómo enfrentamos este problema?

Secuenciales...

37

Timing

¿Cuál es el ḿınimo tiempo que se debe esperar para leer un

resultado válido de su salida?

• En un circuito combinatorio el tiempo que tarda la salida en

estabilizarse depende de la cantidad de capas de compuertas

(latencia)

• En este caso debemos esperar al menos 3 · 10ps = 30ps para

poder leer la salida.

¿Cómo enfrentamos este problema?

Secuenciales...

37

Timing

¿Cuál es el ḿınimo tiempo que se debe esperar para leer un

resultado válido de su salida?

• En un circuito combinatorio el tiempo que tarda la salida en

estabilizarse depende de la cantidad de capas de compuertas

(latencia)

• En este caso debemos esperar al menos 3 · 10ps = 30ps para

poder leer la salida.

¿Cómo enfrentamos este problema?

Secuenciales...

37

Intervalo

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Lógica Digital - Circuitos Secuenciales

Primer Cuatrimestre 2025

Sistemas Digitales

DC - UBA

1

Introducción

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Sobre la clase de hoy

Hoy vamos a ver los principios de diseño, práctica y ejemplos de

circuitos secuenciales, la estructura de la clase va ser la siguiente:

• Repaso de circuitos combinatorios

• Retroalimentación y cambio de modelo

• Circuitos secuenciales asincrónicos

• Circuitos secuenciales sincrónicos

• Latchs - Flip-flops, registros y memorias

2

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Sobre la clase de hoy

Hoy vamos a ver los principios de diseño, práctica y ejemplos de

circuitos secuenciales, la estructura de la clase va ser la siguiente:

• Repaso de circuitos combinatorios

• Retroalimentación y cambio de modelo

• Circuitos secuenciales asincrónicos

• Circuitos secuenciales sincrónicos

• Latchs - Flip-flops, registros y memorias

2

Latchs - Flip-flops

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latchs

Son circuitos que permiten trabar o asegurar el valor de su salida

• Permiten el cambio de sus salidas según el nivel de las

entradas.

• Utilizan realimentación

Ejemplo:

3

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latchs

Son circuitos que permiten trabar o asegurar el valor de su salida

• Permiten el cambio de sus salidas según el nivel de las

entradas.

• Utilizan realimentación

Ejemplo:

3

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latchs

Son circuitos que permiten trabar o asegurar el valor de su salida

• Permiten el cambio de sus salidas según el nivel de las

entradas.

• Utilizan realimentación

Ejemplo:

3

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latchs

Son circuitos que permiten trabar o asegurar el valor de su salida

• Permiten el cambio de sus salidas según el nivel de las

entradas.

• Utilizan realimentación

Ejemplo:

3

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0

1 0

0 1

0 1

0 0

Q∗ Q∗ 1

1 1

0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs
1
Q∗ o Q∗ refiere al estado anterior de la salida

4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0

1

0

0 1

0 1

0 0

Q∗ Q∗ 1

1 1

0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs
1
Q∗ o Q∗ refiere al estado anterior de la salida

4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0 1 0

0 1

0 1

0 0

Q∗ Q∗ 1

1 1

0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs
1
Q∗ o Q∗ refiere al estado anterior de la salida

4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0 1 0

0 1 0 1

0 0

Q∗ Q∗ 1

1 1

0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs
1
Q∗ o Q∗ refiere al estado anterior de la salida

4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗ 1

1 1

0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs

1
Q∗ o Q∗ refiere al estado anterior de la salida 4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗ 1

1 1 0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs

1
Q∗ o Q∗ refiere al estado anterior de la salida 4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗ 1

1 1 0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs

1
Q∗ o Q∗ refiere al estado anterior de la salida 4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗ 1

1 1 0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs

1
Q∗ o Q∗ refiere al estado anterior de la salida 4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch RS (Reset-Set)

Analicemos el ejemplo anterior:

Latch RS implementado con NOR: Tabla de verdad:

S R Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗ 1

1 1 0 0

Con S ,R = (1, 1):

• El valor de las salidas es inconsistente con la especificación

• El valor de las salidas depende de la implementación. Tarea:

implementar con NANDs
1
Q∗ o Q∗ refiere al estado anterior de la salida 4

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0

1 0

0 1

0 1

0 0

Q∗ Q∗

1 1

Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0

1

0

0 1

0 1

0 0

Q∗ Q∗

1 1

Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0 1 0

0 1

0 1

0 0

Q∗ Q∗

1 1

Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0 1 0

0 1 0 1

0 0

Q∗ Q∗

1 1

Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗
1 1

Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗
1 1 Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗
1 1 Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch JK

Tratemos de modificar el comportamiento para el caso cuando las

entradas son (1, 1):

Latch JK: Tabla de verdad:

J K Q Q

1 0 1 0

0 1 0 1

0 0 Q∗ Q∗
1 1 Q∗ Q∗

Con S ,R = (1, 1):

• El valor de las salidas está ahora definido.

• El circuito oscila (estado inestable).

5

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0

Q∗ Q∗

0 1

0 1

0 0

Q∗ Q∗

1 1

1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0

Q∗

Q∗
0 1

0 1

0 0

Q∗ Q∗

1 1

1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0 Q∗ Q∗
0 1

0 1

0 0

Q∗ Q∗

1 1

1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0 Q∗ Q∗
0 1 0 1

0 0

Q∗ Q∗

1 1

1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0 Q∗ Q∗
0 1 0 1

0 0 Q∗ Q∗
1 1

1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0 Q∗ Q∗
0 1 0 1

0 0 Q∗ Q∗
1 1 1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0 Q∗ Q∗
0 1 0 1

0 0 Q∗ Q∗
1 1 1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0 Q∗ Q∗
0 1 0 1

0 0 Q∗ Q∗
1 1 1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo.

6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Latch D

• Nos permite almacenar 1 bit

• Tiene una entrada de datos y una de control

Latch D: Tabla de verdad:

D C Q Q

1 0 Q∗ Q∗
0 1 0 1

0 0 Q∗ Q∗
1 1 1 0

En este caso el circuito es estable en todos los estados. Sin

embargo:

• Los tiempos no se pueden predecir (dependen de D)

• Puede causar carreras si existe un lazo en el circuito externo. 6

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Sincronizando...

Como vimos en la primer parte, nos interesa poder tener un control

de los momentos de transición de estados ⇒ CLOCK

Vimos también que ser reactivo al nivel de una señal no es

conveniente ⇒ Sensibilidad al flanco

7

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Sincronizando...

Como vimos en la primer parte, nos interesa poder tener un control

de los momentos de transición de estados ⇒ CLOCK

Vimos también que ser reactivo al nivel de una señal no es

conveniente ⇒ Sensibilidad al flanco

7

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Sincronizando...

Como vimos en la primer parte, nos interesa poder tener un control

de los momentos de transición de estados ⇒ CLOCK

Vimos también que ser reactivo al nivel de una señal no es

conveniente ⇒ Sensibilidad al flanco

7

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Detector de flanco

Necesitamos un circuito que se comporte de la siguiente manera:

Entonces, aprovechando los tiempos de propagación:

8

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Detector de flanco

Necesitamos un circuito que se comporte de la siguiente manera:

Entonces, aprovechando los tiempos de propagación:

8

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora nuestro latch es sólo sensible a los flancos ascendentes de

clock, entonces:

Lo podemos representar: Tabla de verdad:

D clk QT+1 QT+1

1 0

QT QT

0 1↑

0 1

0 0

QT QT

1 1↑

1 0

Siendo T = n.Tclock y T + 1 = (n + 1)Tclock , donde:

• Tc lock es el peŕıodo del clock (tiempo que dura un ciclo)

• n es una cierta cantidad de pulsos de clock

9

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora nuestro latch es sólo sensible a los flancos ascendentes de

clock, entonces:

Lo podemos representar: Tabla de verdad:

D clk QT+1 QT+1

1 0

QT

QT

0 1↑

0 1

0 0

QT QT

1 1↑

1 0

Siendo T = n.Tclock y T + 1 = (n + 1)Tclock , donde:

• Tc lock es el peŕıodo del clock (tiempo que dura un ciclo)

• n es una cierta cantidad de pulsos de clock

9

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora nuestro latch es sólo sensible a los flancos ascendentes de

clock, entonces:

Lo podemos representar: Tabla de verdad:

D clk QT+1 QT+1

1 0 QT QT

0 1↑

0 1

0 0

QT QT

1 1↑

1 0

Siendo T = n.Tclock y T + 1 = (n + 1)Tclock , donde:

• Tc lock es el peŕıodo del clock (tiempo que dura un ciclo)

• n es una cierta cantidad de pulsos de clock

9

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora nuestro latch es sólo sensible a los flancos ascendentes de

clock, entonces:

Lo podemos representar: Tabla de verdad:

D clk QT+1 QT+1

1 0 QT QT

0 1↑ 0 1

0 0

QT QT

1 1↑

1 0

Siendo T = n.Tclock y T + 1 = (n + 1)Tclock , donde:

• Tc lock es el peŕıodo del clock (tiempo que dura un ciclo)

• n es una cierta cantidad de pulsos de clock

9

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora nuestro latch es sólo sensible a los flancos ascendentes de

clock, entonces:

Lo podemos representar: Tabla de verdad:

D clk QT+1 QT+1

1 0 QT QT

0 1↑ 0 1

0 0 QT QT

1 1↑

1 0

Siendo T = n.Tclock y T + 1 = (n + 1)Tclock , donde:

• Tc lock es el peŕıodo del clock (tiempo que dura un ciclo)

• n es una cierta cantidad de pulsos de clock

9

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora nuestro latch es sólo sensible a los flancos ascendentes de

clock, entonces:

Lo podemos representar: Tabla de verdad:

D clk QT+1 QT+1

1 0 QT QT

0 1↑ 0 1

0 0 QT QT

1 1↑ 1 0

Siendo T = n.Tclock y T + 1 = (n + 1)Tclock , donde:

• Tc lock es el peŕıodo del clock (tiempo que dura un ciclo)

• n es una cierta cantidad de pulsos de clock

9

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora nuestro latch es sólo sensible a los flancos ascendentes de

clock, entonces:

Lo podemos representar: Tabla de verdad:

D clk QT+1 QT+1

1 0 QT QT

0 1↑ 0 1

0 0 QT QT

1 1↑ 1 0

Siendo T = n.Tclock y T + 1 = (n + 1)Tclock , donde:

• Tc lock es el peŕıodo del clock (tiempo que dura un ciclo)

• n es una cierta cantidad de pulsos de clock

9

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop D (Delay)

Ahora podemos entender bien las diferencias:

10

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑

1 0

0 1 1↑

0 1

0 0 1↑

QT QT

1 1 1↑

QT QT

x x 0

QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck

11

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑

1

0

0 1 1↑

0 1

0 0 1↑

QT QT

1 1 1↑

QT QT

x x 0

QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck

11

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑ 1 0

0 1 1↑

0 1

0 0 1↑

QT QT

1 1 1↑

QT QT

x x 0

QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck

11

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑ 1 0

0 1 1↑ 0 1

0 0 1↑

QT QT

1 1 1↑

QT QT

x x 0

QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck

11

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑ 1 0

0 1 1↑ 0 1

0 0 1↑ QT QT

1 1 1↑

QT QT

x x 0

QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck

11

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑ 1 0

0 1 1↑ 0 1

0 0 1↑ QT QT

1 1 1↑ QT QT

x x 0

QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck

11

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑ 1 0

0 1 1↑ 0 1

0 0 1↑ QT QT

1 1 1↑ QT QT

x x 0 QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck

11

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Flip-Flop J-K

Volviendo al latch J-K, ahora con detección de flanco podemos

obtener un comportamiento más adecuado:

Ahora lo podemos representar como:
Tabla de verdad:

J K clk QT+1 QT+1

1 0 1↑ 1 0

0 1 1↑ 0 1

0 0 1↑ QT QT

1 1 1↑ QT QT

x x 0 QT QT

Ahora en el caso cŕıtico donde J,K = (1, 1) la salida tiene un

estado y un tiempo de cambio bien definido:

Se niega el valor anterior cada 1 colck
11

Registros y memorias

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Registros

Ya vimos como un FF D puede almacenar un bit... ¡pero sólo

durante un clock!

• Debemos poder elegir con una entrada adicional de control

por cuanto tiempo queremos almacenar ⇒ enable.

¡Sencillo!:

12

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Registros

Ya vimos como un FF D puede almacenar un bit... ¡pero sólo

durante un clock!

• Debemos poder elegir con una entrada adicional de control

por cuanto tiempo queremos almacenar ⇒ enable.

¡Sencillo!:

12

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Registros

Ya vimos como un FF D puede almacenar un bit... ¡pero sólo

durante un clock!

• Debemos poder elegir con una entrada adicional de control

por cuanto tiempo queremos almacenar ⇒ enable.

¡Sencillo!:

12

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Registro de N-bits

Podemos componer la solución anterior para poder almacenar N

bits:

13

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Componentes de Tres Estados

Noción Eléctrica

A C

B=0

A C
B=1

Śımbolo

A
B

C

Tabla de Verdad

A B C

0 1 0

1 1 1

0 Hi-Z

Hi-Z significa “alta impedancia”, es decir, que tiene una resistencia

alta al pasaje de corriente. Como consecuencia de esto, podemos

considerar al pin C como desconectado del circuito.

14

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Componentes de Tres Estados

IMPORTANTE: Sólo deben ser usados a la salida de

componentes para permitirles conectarse a un medio compartido

(bus). 15

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 0

a) Diseñar un registro de 3 bits. El mismo debe contar con 3

entradas e0, . . . , e2 para ingresar el dato a almacenar, 3 salidas

s0, . . . , s2 para ver el dato almacenado y las señales de control

clk, reset y WriteEnable.

b) Modificar el diseño anterior agregándole componentes de 3

estados para que sólo cuando se active la señal de control

EnableOut muestre el dato almacenado.

c) Modificar nuevamente el diseño para que ei y si estén

conectadas entre śı al mismo tiempo teniendo en lugar de 3

entradas y 3 salidas, 3 entrada-salidas

16

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 0

a) Diseñar un registro de 3 bits. El mismo debe contar con 3

entradas e0, . . . , e2 para ingresar el dato a almacenar, 3 salidas

s0, . . . , s2 para ver el dato almacenado y las señales de control

clk, reset y WriteEnable.

b) Modificar el diseño anterior agregándole componentes de 3

estados para que sólo cuando se active la señal de control

EnableOut muestre el dato almacenado.

c) Modificar nuevamente el diseño para que ei y si estén

conectadas entre śı al mismo tiempo teniendo en lugar de 3

entradas y 3 salidas, 3 entrada-salidas

16

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 0

a) Diseñar un registro de 3 bits. El mismo debe contar con 3

entradas e0, . . . , e2 para ingresar el dato a almacenar, 3 salidas

s0, . . . , s2 para ver el dato almacenado y las señales de control

clk, reset y WriteEnable.

b) Modificar el diseño anterior agregándole componentes de 3

estados para que sólo cuando se active la señal de control

EnableOut muestre el dato almacenado.

c) Modificar nuevamente el diseño para que ei y si estén

conectadas entre śı al mismo tiempo teniendo en lugar de 3

entradas y 3 salidas, 3 entrada-salidas

16

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Solución - Ejercicio 0.a

17

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Solución - Ejercicio 0.b

18

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Solución - Ejercicio 0.c

19

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 1

a) Realizar el esquema de interconexión de n registros como el

diseñado

b) Dar una secuencia de valores de las señales de control para

que se copie el dato del R1 al R0

20

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 1

a) Realizar el esquema de interconexión de n registros como el

diseñado

b) Dar una secuencia de valores de las señales de control para

que se copie el dato del R1 al R0

20

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 1

a) Realizar el esquema de interconexión de n registros como el

diseñado

b) Dar una secuencia de valores de las señales de control para

que se copie el dato del R1 al R0

20

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 1

a) Realizar el esquema de interconexión de n registros como el

diseñado

b) Dar una secuencia de valores de las señales de control para

que se copie el dato del R1 al R0

Señales de control:
R0 R1 . . . Rn

WriteEnable-0 WriteEnable-1 . . . WriteEnable-n

reset-0 reset-1 . . . reset-n

EnableOut-0 EnableOut-1 . . . EnableOut-n

20

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Ejercicio 1

a) Realizar el esquema de interconexión de n registros como el

diseñado

b) Dar una secuencia de valores de las señales de control para

que se copie el dato del R1 al R0

Señales de control:
R0 R1 . . . Rn

WriteEnable-0 WriteEnable-1 . . . WriteEnable-n

reset-0 reset-1 . . . reset-n

EnableOut-0 EnableOut-1 . . . EnableOut-n

Inician todas las señales en 0. Luego se sigue la siguiente secuencia:

• EnableOut-1← 1

• WriteEnable-0← 1

• ...clk....

• WriteEnable-0← 0

• EnableOut-1← 0

20

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Memorias (intro)

Conceptualmente podemos pensar una memoria como M

posiciones de almacenamiento de N bits cada una.

Debemos poder seleccionar a cuál queremos acceder

21

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Memorias (intro)

Conceptualmente podemos pensar una memoria como M

posiciones de almacenamiento de N bits cada una.

Debemos poder seleccionar a cuál queremos acceder

21

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Memorias (intro)

Conceptualmente podemos pensar una memoria como M

posiciones de almacenamiento de N bits cada una.

Debemos poder seleccionar a cuál queremos acceder

21

Conclusiones

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Conclusiones

• Estudiamos la realimentación en circuitos para mantener un

dato en el tiempo y vimos implementaciones de latchs

• Estudiamos los problemas asociados a los tiempos de

propagación de las señales

• Analizamos el uso de un clock para limitar la cantidad de

estados, controlar las transiciones y evitar carreras

• Vimos algunas implementaciones de flip-flops, registros y

memorias

22

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Conclusiones

• Estudiamos la realimentación en circuitos para mantener un

dato en el tiempo y vimos implementaciones de latchs

• Estudiamos los problemas asociados a los tiempos de

propagación de las señales

• Analizamos el uso de un clock para limitar la cantidad de

estados, controlar las transiciones y evitar carreras

• Vimos algunas implementaciones de flip-flops, registros y

memorias

22

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Conclusiones

• Estudiamos la realimentación en circuitos para mantener un

dato en el tiempo y vimos implementaciones de latchs

• Estudiamos los problemas asociados a los tiempos de

propagación de las señales

• Analizamos el uso de un clock para limitar la cantidad de

estados, controlar las transiciones y evitar carreras

• Vimos algunas implementaciones de flip-flops, registros y

memorias

22

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

Conclusiones

• Estudiamos la realimentación en circuitos para mantener un

dato en el tiempo y vimos implementaciones de latchs

• Estudiamos los problemas asociados a los tiempos de

propagación de las señales

• Analizamos el uso de un clock para limitar la cantidad de

estados, controlar las transiciones y evitar carreras

• Vimos algunas implementaciones de flip-flops, registros y

memorias

22

Introducción Latchs - Flip-flops Registros y memorias Conclusiones

La práctica...

• Con lo visto hoy pueden realizar la parte A de la práctica 2.

• Pueden usar el purpleLogisim evolution (Requiere Java 16 o

superior. Para ejecutarlo, teclear en una consola java -jar

logisim-evolution-3.8.0-all.jar desde la carpeta

donde se encuentra el archivo descargado.)

• El próximo jueves debeŕıamos el primer taller de la materia,

el cual es obligatorio. Será en los laboratorios del pabellón

Cero+Infinito (ver cuales en el cronograma que está en el

campus).

• Bibliograf́ıa recomendada: The Essentials of Computer

Organization and Architecture - Linda Null - Caṕıtulo 3

23

https://github.com/logisim-evolution/logisim-evolution/releases/download/v3.8.0/logisim-evolution-3.8.0-all.jar

Sistemas Digitales

Arquitectura 1/2

Primer Cuatrimestre 2025

Sistemas Digitales

DC - UBA

1

Introducción

Clase de hoy

Hoy vamos a ver:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

2

Clase de hoy

Hoy vamos a ver:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

2

Clase de hoy

Hoy vamos a ver:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

2

Clase de hoy

Hoy vamos a ver:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

2

Introducción

¿Qué es la arquitectura, o mejor dicho, la arquitectura de un

procesador? La arquitectura de un procesador se refiere a aquello

con lo que podemos trabajar cuando escribimos un programa. Son

las instrucciones, los registros y la forma de acceder a memoria,

definiendo aśı la estructura lógica y comportamental del

procesador.

3

Introducción

¿Cómo interactuamos con la arquitectura de un procesador?

Escribiendo un programa en un lenguaje ensamblador, o sea, el

lenguaje que el procesador entiende.

4

Introducción

¿Qué cosa no es la arquitectura de un procesador? La

implementación f́ısica espećıfica del procesador que le permite

ejecutar estos programas. Puede haber varias implementaciones

distinas de una misma arquitectura pertenecientes a una o varias

empresas, para el programa, siempre y cuando respeten lo que la

arquitectura define, van a ser intercambiables.

5

Introducción

¿Qué elementos expuestos a quién programa constituyen una

arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

6

Introducción

¿Qué elementos expuestos a quién programa constituyen una

arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

6

Introducción

¿Qué elementos expuestos a quién programa constituyen una

arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

6

Introducción

¿Qué elementos expuestos a quién programa constituyen una

arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

6

Introducción

¿Qué elementos expuestos a quién programa constituyen una

arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

6

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

Preguntémonos:

• ¿Qué comportamiento tiene este programa?

• ¿Cómo interpreta el procesador la ĺınea 5? ¿Esto se realiza en

una o varias instrucciones de lenguaje máquina?

• ¿Cómo se representan y almacenan las variables i y

acumulador?

• ¿Cómo se representan y almacenan las variables a y largo?

• ¿Cómo se decide cuál es la próxima instrucción a ejecutar?

7

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

Preguntémonos:

• ¿Qué comportamiento tiene este programa?

• ¿Cómo interpreta el procesador la ĺınea 5? ¿Esto se realiza en

una o varias instrucciones de lenguaje máquina?

• ¿Cómo se representan y almacenan las variables i y

acumulador?

• ¿Cómo se representan y almacenan las variables a y largo?

• ¿Cómo se decide cuál es la próxima instrucción a ejecutar?

7

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

Preguntémonos:

• ¿Qué comportamiento tiene este programa?

• ¿Cómo interpreta el procesador la ĺınea 5? ¿Esto se realiza en

una o varias instrucciones de lenguaje máquina?

• ¿Cómo se representan y almacenan las variables i y

acumulador?

• ¿Cómo se representan y almacenan las variables a y largo?

• ¿Cómo se decide cuál es la próxima instrucción a ejecutar?

7

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

Preguntémonos:

• ¿Qué comportamiento tiene este programa?

• ¿Cómo interpreta el procesador la ĺınea 5? ¿Esto se realiza en

una o varias instrucciones de lenguaje máquina?

• ¿Cómo se representan y almacenan las variables i y

acumulador?

• ¿Cómo se representan y almacenan las variables a y largo?

• ¿Cómo se decide cuál es la próxima instrucción a ejecutar?

7

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

Preguntémonos:

• ¿Qué comportamiento tiene este programa?

• ¿Cómo interpreta el procesador la ĺınea 5? ¿Esto se realiza en

una o varias instrucciones de lenguaje máquina?

• ¿Cómo se representan y almacenan las variables i y

acumulador?

• ¿Cómo se representan y almacenan las variables a y largo?

• ¿Cómo se decide cuál es la próxima instrucción a ejecutar?

7

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

Preguntémonos:

• ¿Qué comportamiento tiene este programa?

• ¿Cómo interpreta el procesador la ĺınea 5? ¿Esto se realiza en

una o varias instrucciones de lenguaje máquina?

• ¿Cómo se representan y almacenan las variables i y

acumulador?

• ¿Cómo se representan y almacenan las variables a y largo?

• ¿Cómo se decide cuál es la próxima instrucción a ejecutar?
7

Programa de ejemplo en C

Al final de la clase vamos a poder responder todas estas preguntas,

en el contexto de una arquitectura en particular. A continuación,

un pequeño adelanto.

8

Programa de ejemplo en ASM (RISC V)

1 . s e c t i o n . t e x t

2 . g l o b a l s uma r a r r e g l o

3 s uma r a r r e g l o :

4 # a0 = i n t a [] , a1 = i n t l a r go , t0 = acumulador , t1

= i

5 l i t0 , 0 # acumulador = 0

6 l i t1 , 0 # i = 0

7 c i c l o : # Comienzo de c i c l o

8 bge t1 , a1 , f i n # S i i >= la rgo , s a l e d e l c i c l o

9 s l l i t2 , t1 , 2 # Mu l t i p l i c a i por 4 (1 << 2 = 4)

10 add t2 , a0 , t2 # Ac t u a l i z a l a d i r . de memoria

11 lw t2 , 0(t2) # De−r e f e r e n c i a l a d i r ,

12 add t0 , t0 , t2 # Agrega e l v a l o r a l acumulador

13 add i t1 , t1 , 1 # Inc rementa e l i t e r a d o r

14 j c i c l o # Vue lve a comenzar e l c i c l o

15 f i n :

16 mv a0 , t0 # Mueve t0 (acumulador) a a0

17 r e t # Devue lve v a l o r por a0 9

Lenguaje ensamblador

Lenguajes de alto y bajo nivel

Al programar solemos utilizar lenguajes de alto nivel. Estos

lenguajes se expresan en un dominio independiente de la

arquitectura del procesador donde se vaya a correr el programa.

10

Lenguajes de alto y bajo nivel

Proveen un nivel de abstracción basado en:

• Variables que preservan valores (int a, b = 3;).

• Estructuras de control que permiten modificar la ejecución

secuencial del programa (if, switch, for).

• Un mecanismo que nos permite realizar una invocación o

llamada a una función desde cualquier punto del programa,

pasando y recibiendo parámetros (int foo(int bar)).

11

Lenguajes de alto y bajo nivel

Proveen un nivel de abstracción basado en:

• Variables que preservan valores (int a, b = 3;).

• Estructuras de control que permiten modificar la ejecución

secuencial del programa (if, switch, for).

• Un mecanismo que nos permite realizar una invocación o

llamada a una función desde cualquier punto del programa,

pasando y recibiendo parámetros (int foo(int bar)).

11

Lenguajes de alto y bajo nivel

Proveen un nivel de abstracción basado en:

• Variables que preservan valores (int a, b = 3;).

• Estructuras de control que permiten modificar la ejecución

secuencial del programa (if, switch, for).

• Un mecanismo que nos permite realizar una invocación o

llamada a una función desde cualquier punto del programa,

pasando y recibiendo parámetros (int foo(int bar)).

11

Lenguajes de alto y bajo nivel

Proveen un nivel de abstracción basado en:

• Variables que preservan valores (int a, b = 3;).

• Estructuras de control que permiten modificar la ejecución

secuencial del programa (if, switch, for).

• Un mecanismo que nos permite realizar una invocación o

llamada a una función desde cualquier punto del programa,

pasando y recibiendo parámetros (int foo(int bar)).

11

Lenguajes de alto y bajo nivel

Los procesadores pueden ejecutar instrucciones escritas en un

lenguaje en particular, que conoce su arquitectura y se expresa

estrictamente en términos de sus componentes (instrucciones,

registros y memoria). Este es el lenguaje ensamblador de esta

arquitectura ()RISC V en nuestro caso).

12

Lenguajes de alto y bajo nivel

Cada arquitectura cuenta con un lenguaje ensamblador particular,

en nuestro caso cuando decimos lenguaje ensamblador, nos

estamos refiriendo al lenguaje ensamblador de RISC V.

Los lenguajes ensambladores son, en realidad, una familia de

lenguajes de bajo nivel.

13

Lenguajes de alto y bajo nivel

Los procesadores implementan una arquitectura y necesitan ser

acompañados por programas de compilado, ensamblado y enlazado

que permiten escribir código en alto nivel y conseguir que éste se

traduzca, en una serie de pasos, en código binario ejecutable. En

caso contrario solamente podŕıamos programar en lenguaje

ensamblador.

14

Lenguajes de alto y bajo nivel

Código de alto nivel

(Compilador)

Código de bajo nivel

(Ensamblador)

Código objeto

(Enlazador)

Código objeto en archivos

Bibliotecas

Código binario ejecutable

15

Lenguajes de alto y bajo nivel

suma arreglo.c

(Aśı lo escribimos en el editor)

suma arreglo.S

(Primera traducción a ensamblador))

suma arreglo.o

(Segunda traducción a código objeto)
mem.o

suma arreglo.bin

(Tercera traducción, listo para ejecutar)

16

RISC V

La arquitectura RISC V es una arquitectura abierta, modular, de

uso industrial y que está ganando rápidamente adopción en varios

dominios estratégicos.

17

Instrucciones

Una suma en el lenguaje ensamblador de RISC V se escribe de la

siguiente manera:

C RISC V

a = b + c ; add a , b , c

La primera parte, add, recibe el nombre de mnemónico, e indica el

tipo de operación que queremos realizar, en este caso una suma.

Los operandos b y c son los operandos de fuente y a el operando

destino ya que será el que almacene el valor del resultado de la

operación.

18

Instrucciones

Una suma en el lenguaje ensamblador de RISC V se escribe de la

siguiente manera:

C RISC V

a = b + c ; add a , b , c

La primera parte, add, recibe el nombre de mnemónico, e indica el

tipo de operación que queremos realizar, en este caso una suma.

Los operandos b y c son los operandos de fuente y a el operando

destino ya que será el que almacene el valor del resultado de la

operación.

18

Instrucciones compuestas

C RISC V

// op e r a c i o n e s compuestas

a = b + c − d ;

add t , b , c # t = b + c

sub a , t , d # a = t − d

El lenguaje ensamblador no permite la composición de operaciones

del modo en que lo hace, por ejemplo, C, por lo que debemos

descomponer la operaciones en instrucciones atómicas (una suma y

una resta).

19

Instrucciones compuestas

C RISC V

// op e r a c i o n e s compuestas

a = b + c − d ;

add t , b , c # t = b + c

sub a , t , d # a = t − d

El lenguaje ensamblador no permite la composición de operaciones

del modo en que lo hace, por ejemplo, C, por lo que debemos

descomponer la operaciones en instrucciones atómicas (una suma y

una resta).

19

Registros

La operaciones lógico aritméticas modifican el estado del

procesador según su semántica, dichas modificaciones deben

realizarse rápidamente debido a que constituyen el grueso del

cómputo que ocurre en nuestros procesadores. Es por esto que los

operandos de fuente y destino son registros y no direcciones de

memoria.

Si queremos realizar operaciones aritméticas o lógicas con datos

que se encuentran en memoria, debemos primero mover esos datos

de la memoria principal a los registros.

20

Register file

RISC V cuenta con 32 registros que suelen implementarse como un

arreglo de memoria estática de 32 bits con varios puertos. A este

arreglo se lo suele referir como banco de registros o archivo de

registros (register file).

21

Nombres de los registros

Los registros pueden nombrarse por su ı́ndice, desde x0 a x31 o

según su uso habitual, que indica el propósito que suele cumplir el

registro en el funcionamiento de un programa.

• El registro zero (x0) almacena siempre el valor 0, y no

puede ser escrito. Cualquier operación que lo tenga como

operando de destino, descarta la escritura del mismo.

• Los registros s0 a s11 y los t0 a t6 se utilizan para

almacenar variables.

• ra y de a0 a a7 tienen usos relacionados con las llamadas a

función.

22

Nombres de los registros

Los registros pueden nombrarse por su ı́ndice, desde x0 a x31 o

según su uso habitual, que indica el propósito que suele cumplir el

registro en el funcionamiento de un programa.

• El registro zero (x0) almacena siempre el valor 0, y no

puede ser escrito. Cualquier operación que lo tenga como

operando de destino, descarta la escritura del mismo.

• Los registros s0 a s11 y los t0 a t6 se utilizan para

almacenar variables.

• ra y de a0 a a7 tienen usos relacionados con las llamadas a

función.

22

Nombres de los registros

Los registros pueden nombrarse por su ı́ndice, desde x0 a x31 o

según su uso habitual, que indica el propósito que suele cumplir el

registro en el funcionamiento de un programa.

• El registro zero (x0) almacena siempre el valor 0, y no

puede ser escrito. Cualquier operación que lo tenga como

operando de destino, descarta la escritura del mismo.

• Los registros s0 a s11 y los t0 a t6 se utilizan para

almacenar variables.

• ra y de a0 a a7 tienen usos relacionados con las llamadas a

función.

22

Nombres de los registros

Los registros pueden nombrarse por su ı́ndice, desde x0 a x31 o

según su uso habitual, que indica el propósito que suele cumplir el

registro en el funcionamiento de un programa.

• El registro zero (x0) almacena siempre el valor 0, y no

puede ser escrito. Cualquier operación que lo tenga como

operando de destino, descarta la escritura del mismo.

• Los registros s0 a s11 y los t0 a t6 se utilizan para

almacenar variables.

• ra y de a0 a a7 tienen usos relacionados con las llamadas a

función.

22

Nombres de los registros según su uso

23

Registros y variables

En el lenguaje ensamblador no nos referimos a un conjunto de

variables no acotadas y cuyo nombre podemos definir según

convenga para la interpretación del programa, sino que contamos

con un conjunto fijo de 32 elementos con los que operar.

24

Registros y variables

Por eso, cuando traducimos un programa de un lenguaje de alto

nivel a ensamblador debemos decidir en qué registros almacenar los

valores de nuestras variables.

25

Instrucciones compuestas sobre registros

C RISC V

// op e r a c i o n e s compuestas

a = b + c − d ;

s0 = a , s1 = b

s2 = c , s3 = d , t0 = t

add t0 , s1 , s2 # t = b + c

sub s0 , t0 , s3 # a = t − d

Volvemos al ejemplo anterior utilizando los nombres reales de los

registros sobre los que podemos operar.

26

Instrucciones compuestas sobre registros

C RISC V

// op e r a c i o n e s compuestas

a = b + c − d ;

s0 = a , s1 = b

s2 = c , s3 = d , t0 = t

add t0 , s1 , s2 # t = b + c

sub s0 , t0 , s3 # a = t − d

Volvemos al ejemplo anterior utilizando los nombres reales de los

registros sobre los que podemos operar.

26

Valores inmediatos

Las instrucciones de lenguaje ensamblador pueden tener valores

constantes como operandos, suelen llamarse valores inmediatos ya

que se encuentran disponibles en la misma instrucción (no hace

falta recuperar su valor a partir de un registro o desde la memoria).

27

Valores inmediatos

El valor puede escribirse en decimal, hexadecimal (prefijo 0x) o

binario (prefijo 0b). Los valores inmediatos son de 12 bits y se

extiende su signo a 32 bits antes de operar.

28

Operando con constantes

C RISC V

a = a + 4 ;

b = a −12;

#s0=a , s1=b

add i s0 , s0 , 4 # a = a + 4

add i s1 , s0 , −12 # b = a − 12

Podemos definir constantes positivas y negativas como operandos

utilizando la operación addi (add inmediate).

29

Operando con constantes

C RISC V

a = a + 4 ;

b = a −12;

#s0=a , s1=b

add i s0 , s0 , 4 # a = a + 4

add i s1 , s0 , −12 # b = a − 12

Podemos definir constantes positivas y negativas como operandos

utilizando la operación addi (add inmediate).

29

Asignando constantes a registros

C RISC V

i = 0 ;

x = 2032 ;

y = −78;

#s4=i , s5=x, s6=y

add i s4 , zero , 0 # i = 0

add i s5 , zero , 2032 # i = 0

add i s6 , zero , −78 # i = 0

Podemos definir constantes positivas y negativas como operandos.

30

Asignando constantes a registros

C RISC V

i = 0 ;

x = 2032 ;

y = −78;

#s4=i , s5=x, s6=y

add i s4 , zero , 0 # i = 0

add i s5 , zero , 2032 # i = 0

add i s6 , zero , −78 # i = 0

Podemos definir constantes positivas y negativas como operandos.

30

Valores inmediatos de 32 bits

C RISC V

i n t a = 0xABCDE123 ;
l u i s2 , 0xABCDE #s2=0xABCDE000

add i s2 , s2 , 0x123 #s2=0xABCDE123

Como los valores inmediatos son de 12 bits y se los extiende

respetando el signo a 32 bits cuando realizamos una operación,

cargar una constante de 32 bits requiere que hagamos dos

operaciones.

31

Valores inmediatos de 32 bits

C RISC V

i n t a = 0xABCDE123 ;
l u i s2 , 0xABCDE #s2=0xABCDE000

add i s2 , s2 , 0x123 #s2=0xABCDE123

Como los valores inmediatos son de 12 bits y se los extiende

respetando el signo a 32 bits cuando realizamos una operación,

cargar una constante de 32 bits requiere que hagamos dos

operaciones.

31

Valores inmediatos de 32 bits

C RISC V

i n t a = 0xABCDE123 ;
l u i s2 , 0xABCDE #s2=0xABCDE000

add i s2 , s2 , 0x123 #s2=0xABCDE123

Primero cargamos los veinte bits más altos con la instrucción

lui(load upper inmediate) y luego los 12 bits más bajos con un

addi como veńıamos haciendo.

32

Valores inmediatos de 32 bits

C RISC V

i n t a = 0xFEEDA987 ;
l u i s2 , 0xFEEDB #s2=0xFEEDB000

add i s2 , s2 , −1657 #s2=0xFEEDA987

Si la parte baja se expresa como un número negativo (bit más alto

en 1), al extender el signo va a cargar con unos la parte alta. Por

eso tenemos que tener esto en cuenta.

33

Valores inmediatos de 32 bits

C RISC V

i n t a = 0xFEEDA987 ;
l u i s2 , 0xFEEDB #s2=0xFEEDB000

add i s2 , s2 , −1657 #s2=0xFEEDA987

Si la parte baja se expresa como un número negativo (bit más alto

en 1), al extender el signo va a cargar con unos la parte alta. Por

eso tenemos que tener esto en cuenta.

33

Valores inmediatos de 32 bits

C RISC V

i n t a = 0xFEEDA987 ;
l u i s2 , 0xFEEDB #s2=0xFEEDB000

add i s2 , s2 , −1657 #s2=0xFEEDA987

La parte alta con todos unos equivale a un menos uno en

complemento a dos, por lo cual, para compensar el efecto de la

extensión del signo en la suma, se incrementa en uno la parte alta

que vamos a cargar. En el ejemplo hacemos lui s2, 0xFEEDB en

lugar de lui s2, 0xFEEDA.

34

Memoria

El tipo de operando que resta presentar es el de memoria. La

memoria se estructura y accede como si fuera un arreglo de

elementos de 32 bits (4 bytes).

El acceso a memoria es significativamente más lento que el acceso

a registros pero nos permite acceder a mucha más información que

si tuviésemos que operar solamente con registros.

35

Direcciones de memoria

RISC V permite acceder a la memoria con ı́ndices (direcciones) de

32 bits, o sea 4.294.967.296 ı́ndices posibles.

Pero cabe notar que el ı́ndice apunta a un byte en particular, o sea,

a uno de los cuatro bytes de la palabra, de modo que entre una

palabra de 32 bits y otra, los ı́ndices avanzan en cuatro unidades.

Podemos indicar que la lectura o escritura se hará a partir de un

byte en particular.

36

Accesos a memoria (direcciones)

A la izquierda (a), vemos los ı́ndices de memoria (byte address)

representados de derecha a izquierda, donde a la derecha vemos el

byte menos significativo (LSB) y a la derecha el byte más

significativo de la palabra (MSB). La dirección de palabra (word

address) corresponde al ı́ndice del byte menos significativo de ésta.

37

Accesos a memoria (datos)

A la derecha (b) vemos los datos ordenados según palabras de 32

bits (4 bytes) y el número de palabra (word number). La relación

entre número de palabra y dirección de palabra es:

word address ∗ 4 = word number

38

Leyendo y escribiendo datos

Para operar con la memoria utilizamos las instrucciones lw (load

word) para leer una palabra de memoria en un registro y sw (store

word) para escribir una palabra desde un registro a la memoria. Las

direcciones se definen como:

dirección = base + desplazamiento

Donde la base será el valor de un registro y el desplazamiento una

constante con signo de 12 bits.

39

Leyendo un arreglo

C RISC V

i n t a = mem [2] ;
#s7 = a , s3 = mem

lw , s7 , 8(s3)

Si suponemos que los datos del arreglo mem son palabras de 4

bytes, y que la posición de memoria en la que comienza el arreglo

está almacenada en s3, la forma de leer el tercer dato del arreglo

(recordemos que el primer dato se encuentra en mem[0]) es

indicando s3 como la base y 8 como el desplazamiento, ya que la

memoria se accede con ı́ndices que apuntan de a byte y cada dato

tiene 4 bytes (4 * 2 = 8).

40

Leyendo un arreglo

C RISC V

i n t a = mem [2] ;
#s7 = a , s3 = mem

lw , s7 , 8(s3)

Si suponemos que los datos del arreglo mem son palabras de 4

bytes, y que la posición de memoria en la que comienza el arreglo

está almacenada en s3, la forma de leer el tercer dato del arreglo

(recordemos que el primer dato se encuentra en mem[0]) es

indicando s3 como la base y 8 como el desplazamiento, ya que la

memoria se accede con ı́ndices que apuntan de a byte y cada dato

tiene 4 bytes (4 * 2 = 8).

40

Escribiendo en un arreglo

C RISC V

mem[5] = 33 ;

#s3 = mem

add i t3 , zero , 33

sw , t3 , 20(s3)

Si suponemos que los datos del arreglo mem son palabras de 4

bytes, y que la posición de memoria en la que comienza el arreglo

está almacenada en s3, la forma de escribir el quinto dato del

arreglo (recordemos que el primer dato se encuentra en mem[0]) es

indicando s3 como la base y 20 como el desplazamiento ya que la

memoria se accede con ı́ndices que apuntan de a byte y cada dato

tiene 4 bytes (4 * 5 = 20).

41

Escribiendo en un arreglo

C RISC V

mem[5] = 33 ;

#s3 = mem

add i t3 , zero , 33

sw , t3 , 20(s3)

Si suponemos que los datos del arreglo mem son palabras de 4

bytes, y que la posición de memoria en la que comienza el arreglo

está almacenada en s3, la forma de escribir el quinto dato del

arreglo (recordemos que el primer dato se encuentra en mem[0]) es

indicando s3 como la base y 20 como el desplazamiento ya que la

memoria se accede con ı́ndices que apuntan de a byte y cada dato

tiene 4 bytes (4 * 5 = 20).

41

Repaso de lenguaje ensamblador

Hasta este punto se presentó lo siguiente:

• Definición de arquitectura.

• Definición de lenguajes de alto y bajo nivel.

• Lenguaje ensamblador de RISCV.

• Operaciones, operandos, uso de registros, constantes y

memoria.

42

Repaso de lenguaje ensamblador

Hasta este punto se presentó lo siguiente:

• Definición de arquitectura.

• Definición de lenguajes de alto y bajo nivel.

• Lenguaje ensamblador de RISCV.

• Operaciones, operandos, uso de registros, constantes y

memoria.

42

Repaso de lenguaje ensamblador

Hasta este punto se presentó lo siguiente:

• Definición de arquitectura.

• Definición de lenguajes de alto y bajo nivel.

• Lenguaje ensamblador de RISCV.

• Operaciones, operandos, uso de registros, constantes y

memoria.

42

Repaso de lenguaje ensamblador

Hasta este punto se presentó lo siguiente:

• Definición de arquitectura.

• Definición de lenguajes de alto y bajo nivel.

• Lenguaje ensamblador de RISCV.

• Operaciones, operandos, uso de registros, constantes y

memoria.

42

Repaso de lenguaje ensamblador

Hasta este punto se presentó lo siguiente:

• Definición de arquitectura.

• Definición de lenguajes de alto y bajo nivel.

• Lenguaje ensamblador de RISCV.

• Operaciones, operandos, uso de registros, constantes y

memoria.

42

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

¿Qué podemos entender de la traducción que presentamos antes?

43

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

¿Qué podemos entender de la traducción que presentamos antes?

43

Programa de ejemplo en ASM (RISC V)

1 . s e c t i o n . t e x t

2 . g l o b a l s uma r a r r e g l o

3 s uma r a r r e g l o :

4 # a0 = i n t a [] , a1 = i n t l a r go , t0 = acumulador , t1

= i

5 l i t0 , 0 # acumulador = 0

6 l i t1 , 0 # i = 0

7 c i c l o : # Comienzo de c i c l o

8 bge t1 , a1 , f i n # S i i >= la rgo , s a l e d e l c i c l o

9 s l l i t2 , t1 , 2 # Mu l t i p l i c a i por 4 (1 << 2 = 4)

10 add t2 , a0 , t2 # Ac t u a l i z a l a d i r . de memoria

11 lw t2 , 0(t2) # De−r e f e r e n c i a l a d i r ,

12 add t0 , t0 , t2 # Agrega e l v a l o r a l acumulador

13 add i t1 , t1 , 1 # Inc rementa e l i t e r a d o r

14 j c i c l o # Vue lve a comenzar e l c i c l o

15 f i n :

16 mv a0 , t0 # Mueve t0 (acumulador) a a0

17 r e t # Devue lve v a l o r por a0 44

Intervalo

Programando con RISCV

Programas almacenados en memoria

Uno de los principios fundamentales de los procesadores es el de

programa almacenado en memoria, eso significa que las

instrucciones que describen el comportamiento de un programa se

almacenan (siguiendo un formato particular) en la memoria del

procesador, la misma que se accede en las operaciones de lectura y

escritura (sw,lw).

45

Tamaño de la instrucción

Cada instrucción ocupa 32 bits (una palabra), por lo cual sus

direcciones se incrementan en múltiplos de 4, recordemos que la

arquitectura RISC V permite acceder a la memoria con direcciones

que refieren al byte menos significativo a partir del cual leer o

escribir la palabra.

46

Fetch-decode-execute

Dirección Instrucción almacenada

0x538

0x53C

0x540

add i s1 , s2 , 3

lw t2 , 8(s1)

sw s3 , 3(t6)

El procesador ejecuta el programa almacenando la posición de

memoria de la instrucción que se está ejecutando en un registro de

32 bits conocido como el program counter (PC). Va a cargar el

contenido de la instrucción de memoria (fetch), ejecutarla

(execute) y luego incrementar el PC en 4 posiciones para repetir el

ciclo. Al comenzar este programa se carga la instrucción de la

posición 0x538, se la ejecuta, se incrementa el PC a 0x53C y se

vuelve a repetir el ciclo.

47

Fetch-decode-execute

Dirección Instrucción almacenada

0x538

0x53C

0x540

add i s1 , s2 , 3

lw t2 , 8(s1)

sw s3 , 3(t6)

El procesador ejecuta el programa almacenando la posición de

memoria de la instrucción que se está ejecutando en un registro de

32 bits conocido como el program counter (PC). Va a cargar el

contenido de la instrucción de memoria (fetch), ejecutarla

(execute) y luego incrementar el PC en 4 posiciones para repetir el

ciclo. Al comenzar este programa se carga la instrucción de la

posición 0x538, se la ejecuta, se incrementa el PC a 0x53C y se

vuelve a repetir el ciclo.

47

Fetch-decode-execute

A esto lo llamamos ciclo de fetch decode execute o ciclo de

instrucción. Ya que al ejecutar un programa se carga una

instrucción de memoria (fetch), se la decodifica para configurar el

procesador según su tipo (decode) y luego se actualiza el estado

del procesador (registros y memoria), de acuerdo al a semántica de

la instrucción (execute).
48

Program counter

En la sección de control de ejecución condicional veremos la

importancia que tiene el valor del program counter.

49

Instrucciones

Instrucciones lógicas

El set de instrucciones de RISC V cuenta con instrucciones lógicas

como la conjunción (and), disyunción (or) y la disyunción

excluyente (xor).

50

Instrucciones lógicas

En el diagrama vemos los valores de los registros s1 y s2,

representados en formato binario, y luego los resultados de aplicar

las operaciones lógicas con distintos operandos de destino

utilizando los anteriores como fuente.

51

Instrucciones lógicas

Algunos usos t́ıpicos de las instrucciones lógicas son:

• or: Combinar dos registros que sólo tienen asignada la parte

alta y baja respectivamente, un or entre 0xFEED0000 y

0x0000F0CA resulta en 0xFEEDF0CA.

• and: Nos permite limpiar partes de un registro, si quisiéramos

preservar solamente la parte baja de 0xBABAC0C0 podemos

hacer un and con 0x0000FFFF consiguiendo 0x0000C0C0.

• xor: Conseguir la negación lógica al aplicar la operación a -1,

recordemos que -1 se codifica con todos 1, por lo que xori

s1, s2, -1 va a aplicar un xor entre s2 y -1 que se codifica

como 0xFFF en 12 bits y se extiende a 0xFFFFFFFF al

ejecutar, consiguiendo un xor contra todos unos, que

efectivamente niega el valor.

52

Instrucciones lógicas

Algunos usos t́ıpicos de las instrucciones lógicas son:

• or: Combinar dos registros que sólo tienen asignada la parte

alta y baja respectivamente, un or entre 0xFEED0000 y

0x0000F0CA resulta en 0xFEEDF0CA.

• and: Nos permite limpiar partes de un registro, si quisiéramos

preservar solamente la parte baja de 0xBABAC0C0 podemos

hacer un and con 0x0000FFFF consiguiendo 0x0000C0C0.

• xor: Conseguir la negación lógica al aplicar la operación a -1,

recordemos que -1 se codifica con todos 1, por lo que xori

s1, s2, -1 va a aplicar un xor entre s2 y -1 que se codifica

como 0xFFF en 12 bits y se extiende a 0xFFFFFFFF al

ejecutar, consiguiendo un xor contra todos unos, que

efectivamente niega el valor.

52

Instrucciones lógicas

Algunos usos t́ıpicos de las instrucciones lógicas son:

• or: Combinar dos registros que sólo tienen asignada la parte

alta y baja respectivamente, un or entre 0xFEED0000 y

0x0000F0CA resulta en 0xFEEDF0CA.

• and: Nos permite limpiar partes de un registro, si quisiéramos

preservar solamente la parte baja de 0xBABAC0C0 podemos

hacer un and con 0x0000FFFF consiguiendo 0x0000C0C0.

• xor: Conseguir la negación lógica al aplicar la operación a -1,

recordemos que -1 se codifica con todos 1, por lo que xori

s1, s2, -1 va a aplicar un xor entre s2 y -1 que se codifica

como 0xFFF en 12 bits y se extiende a 0xFFFFFFFF al

ejecutar, consiguiendo un xor contra todos unos, que

efectivamente niega el valor.

52

Instrucciones lógicas

Algunos usos t́ıpicos de las instrucciones lógicas son:

• or: Combinar dos registros que sólo tienen asignada la parte

alta y baja respectivamente, un or entre 0xFEED0000 y

0x0000F0CA resulta en 0xFEEDF0CA.

• and: Nos permite limpiar partes de un registro, si quisiéramos

preservar solamente la parte baja de 0xBABAC0C0 podemos

hacer un and con 0x0000FFFF consiguiendo 0x0000C0C0.

• xor: Conseguir la negación lógica al aplicar la operación a -1,

recordemos que -1 se codifica con todos 1, por lo que xori

s1, s2, -1 va a aplicar un xor entre s2 y -1 que se codifica

como 0xFFF en 12 bits y se extiende a 0xFFFFFFFF al

ejecutar, consiguiendo un xor contra todos unos, que

efectivamente niega el valor.

52

Instrucciones de desplazamiento

Las instrucciones de desplazamiento permiten desplazar un valor a

izquierda o derecha en una cantidad definida por el segundo

operando fuente, si este segundo operando se trata de un

inmediato, lo codifica en 5 bits (complemento a dos extendiendo el

signo a 32 bits).

53

Instrucciones de desplazamiento

Hay tres operaciones posibles:

• sll (shift left logical): desplaza a izquierda el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a derecha.

• srl (shift right logical): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a izquierda.

• sra (shift right arithmetic): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con el valor del bit más significativo a izquierda

(preserva signo).

Existen versiones donde el segundo operando fuente es un

inmediato (slli, srli, srai).

54

Instrucciones de desplazamiento

Hay tres operaciones posibles:

• sll (shift left logical): desplaza a izquierda el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a derecha.

• srl (shift right logical): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a izquierda.

• sra (shift right arithmetic): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con el valor del bit más significativo a izquierda

(preserva signo).

Existen versiones donde el segundo operando fuente es un

inmediato (slli, srli, srai).

54

Instrucciones de desplazamiento

Hay tres operaciones posibles:

• sll (shift left logical): desplaza a izquierda el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a derecha.

• srl (shift right logical): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a izquierda.

• sra (shift right arithmetic): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con el valor del bit más significativo a izquierda

(preserva signo).

Existen versiones donde el segundo operando fuente es un

inmediato (slli, srli, srai).

54

Instrucciones de desplazamiento

Hay tres operaciones posibles:

• sll (shift left logical): desplaza a izquierda el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a derecha.

• srl (shift right logical): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a izquierda.

• sra (shift right arithmetic): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con el valor del bit más significativo a izquierda

(preserva signo).

Existen versiones donde el segundo operando fuente es un

inmediato (slli, srli, srai).

54

Instrucciones de desplazamiento

Hay tres operaciones posibles:

• sll (shift left logical): desplaza a izquierda el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a derecha.

• srl (shift right logical): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con ceros a izquierda.

• sra (shift right arithmetic): desplaza a derecha el valor tantas

veces como especifique el segundo operando fuente,

completando con el valor del bit más significativo a izquierda

(preserva signo).

Existen versiones donde el segundo operando fuente es un

inmediato (slli, srli, srai).

54

Instrucciones de desplazamiento

En el diagrama vemos los valores del registro s5, representado en

formato binario, y luego los resultados de aplicar las operaciones de

desplazamiento.

55

Consiguiendo un byte en particular

Utilizando desplazamientos y máscaras podemos acceder a un byte

en particular dentro de una palabra, si tenemos el valor

0xABCDEF00 en el registro s1 y queremos conseguir el segundo

byte (desde el menos significativo) y almacenarlo en s2 podemos

hacer lo siguiente:

1 s r l i t0 , s1 , 8

2 and i s2 , t0 , 0xFF

La primera instrucción desplaza el valor un byte a la derecha y la

segunda preserva solamente el byte menos significativo, que luego

almacena en s2.

56

Control del flujo de ejecución

Para poder ejecutar programas que no tengan un flujo secuencial

(donde todas las instrucciones se suceden en orden), necesitamos

poder saltear instrucciones en nuestro programa o volver a una

instrucción anterior, como suele suceder en los lenguajes de alto

nivel con las estructuras de if, while, for, case.

57

Control del flujo de ejecución

El mecanismo para conseguir esto en el lenguaje ensamblador de

RISC V es modificar el valor del registro PC (program counter) de

modo que la próxima instrucción no sea la siguiente en la memoria

sino la que se defina en una instrucción espećıfica.

58

Instrucciones de control del flujo de ejecución

Las instrucciones de control de flujo van a comparar el valor de los

dos primeros operandos, y en función del resultado van reemplazar

el valor del PC con el del tercer operando. Las instrucciones son:

• beq(branch if equal): que reemplaza el valor del PC si los dos

primeros operandos son iguales.

• bne(branch if not equal): que reemplaza el valor del PC si los

dos primeros operandos son distintos.

• blt(branch if less than): que reemplaza el valor del PC si el

primer operando es menor que el segundo.

• bge(branch if greater than or equal): que reemplaza el valor

del PC si el primer operando es mayor o igual que el segundo.

59

Instrucciones de control del flujo de ejecución

Las instrucciones de control de flujo van a comparar el valor de los

dos primeros operandos, y en función del resultado van reemplazar

el valor del PC con el del tercer operando. Las instrucciones son:

• beq(branch if equal): que reemplaza el valor del PC si los dos

primeros operandos son iguales.

• bne(branch if not equal): que reemplaza el valor del PC si los

dos primeros operandos son distintos.

• blt(branch if less than): que reemplaza el valor del PC si el

primer operando es menor que el segundo.

• bge(branch if greater than or equal): que reemplaza el valor

del PC si el primer operando es mayor o igual que el segundo.

59

Instrucciones de control del flujo de ejecución

Las instrucciones de control de flujo van a comparar el valor de los

dos primeros operandos, y en función del resultado van reemplazar

el valor del PC con el del tercer operando. Las instrucciones son:

• beq(branch if equal): que reemplaza el valor del PC si los dos

primeros operandos son iguales.

• bne(branch if not equal): que reemplaza el valor del PC si los

dos primeros operandos son distintos.

• blt(branch if less than): que reemplaza el valor del PC si el

primer operando es menor que el segundo.

• bge(branch if greater than or equal): que reemplaza el valor

del PC si el primer operando es mayor o igual que el segundo.

59

Instrucciones de control del flujo de ejecución

Las instrucciones de control de flujo van a comparar el valor de los

dos primeros operandos, y en función del resultado van reemplazar

el valor del PC con el del tercer operando. Las instrucciones son:

• beq(branch if equal): que reemplaza el valor del PC si los dos

primeros operandos son iguales.

• bne(branch if not equal): que reemplaza el valor del PC si los

dos primeros operandos son distintos.

• blt(branch if less than): que reemplaza el valor del PC si el

primer operando es menor que el segundo.

• bge(branch if greater than or equal): que reemplaza el valor

del PC si el primer operando es mayor o igual que el segundo.

59

Instrucciones de control del flujo de ejecución

Las instrucciones de control de flujo van a comparar el valor de los

dos primeros operandos, y en función del resultado van reemplazar

el valor del PC con el del tercer operando. Las instrucciones son:

• beq(branch if equal): que reemplaza el valor del PC si los dos

primeros operandos son iguales.

• bne(branch if not equal): que reemplaza el valor del PC si los

dos primeros operandos son distintos.

• blt(branch if less than): que reemplaza el valor del PC si el

primer operando es menor que el segundo.

• bge(branch if greater than or equal): que reemplaza el valor

del PC si el primer operando es mayor o igual que el segundo.

59

Instrucciones de control sobre operandos sin signo

Existen variantes que interpretan a los operandos como enteros sin

signo a la hora de realizar las comparaciones. Sus mnemónicos son

bltu, bgeu.

60

Ejemplo y etiquetas

1 add i s0 , zero , 4

2 add i s1 , zero , 1

3 s l l i s1 , s1 , 2

4 beq s0 , s1 , t a r g e t

5 add i s1 , s1 , 1

6 sub s1 , s1 , s0

7 t a r g e t :

8 add s1 , s1 , s0

Este ejemplo carga un 4 en s0 y un 1 en s1 (addi), luego desplaza

a s1 dos posiciones a la izquierda (slli), lo cual equivale a

multiplicar por 4 y compara sin ambos registros son iguales (beq).

El último operando es de tipo etiqueta.

61

Ejemplo y etiquetas

1 add i s0 , zero , 4

2 add i s1 , zero , 1

3 s l l i s1 , s1 , 2

4 beq s0 , s1 , t a r g e t

5 add i s1 , s1 , 1

6 sub s1 , s1 , s0

7 t a r g e t :

8 add s1 , s1 , s0

Este ejemplo carga un 4 en s0 y un 1 en s1 (addi), luego desplaza

a s1 dos posiciones a la izquierda (slli), lo cual equivale a

multiplicar por 4 y compara sin ambos registros son iguales (beq).

El último operando es de tipo etiqueta.

61

Ejemplo y etiquetas

1 add i s0 , zero , 4

2 add i s1 , zero , 1

3 s l l i s1 , s1 , 2

4 beq s0 , s1 , t a r g e t

5 add i s1 , s1 , 1

6 sub s1 , s1 , s0

7 t a r g e t :

8 add s1 , s1 , s0

Las etiquetas se definen como nombre: donde nombre es la

referencia que podemos usar en otras instrucciones y será

interpretada como la dirección de memoria donde se almacena la

instrucción inmediatamente siguiente a su definición.

62

Ejemplo y etiquetas

1 add i s0 , zero , 4

2 add i s1 , zero , 1

3 s l l i s1 , s1 , 2

4 beq s0 , s1 , t a r g e t

5 add i s1 , s1 , 1

6 sub s1 , s1 , s0

7 t a r g e t :

8 add s1 , s1 , s0 #d i r : 0xB400

Si la instrucción add s1, s1, s0 se encuentra almacenada en la

dirección 0xB400, al evaluar la condición en beq s0, s1, target

y determinar que los valores de los operandos son iguales, el PC

será actualizado con el valor 0xB400 y la próxima instrucción a

ejecutar será add s1, s1, s0 en lugar de addi s1, s1, 1.

63

Ejemplo y etiquetas

1 add i s0 , zero , 4

2 add i s1 , zero , 1

3 s l l i s1 , s1 , 2

4 beq s0 , s1 , t a r g e t

5 add i s1 , s1 , 1

6 sub s1 , s1 , s0

7 t a r g e t :

8 add s1 , s1 , s0 #d i r : 0xB400

Si la instrucción add s1, s1, s0 se encuentra almacenada en la

dirección 0xB400, al evaluar la condición en beq s0, s1, target

y determinar que los valores de los operandos son iguales, el PC

será actualizado con el valor 0xB400 y la próxima instrucción a

ejecutar será add s1, s1, s0 en lugar de addi s1, s1, 1.

63

Saltos incondicionales

En los casos anteriores el valor del PC se actualizaba solamente

cuando se cumpĺıa una condición luego de comparar el valor de dos

operandos. Para realizar una actualización (salto) incondicional del

valor del PC se utilizan las instrucciones:

• j (jump): que simplemente actualiza el valor del PC con el del

operando provisto (inmediato de 20 bits extendidos en signo a

32).

• jal (jump and link): que almacena el valor actual del PC en el

registro indicado en el primer operando y actualiza el valor del

PC con el del segundo operando (inmediato de 20 bits

extendidos en signo a 32).

64

Saltos incondicionales

En los casos anteriores el valor del PC se actualizaba solamente

cuando se cumpĺıa una condición luego de comparar el valor de dos

operandos. Para realizar una actualización (salto) incondicional del

valor del PC se utilizan las instrucciones:

• j (jump): que simplemente actualiza el valor del PC con el del

operando provisto (inmediato de 20 bits extendidos en signo a

32).

• jal (jump and link): que almacena el valor actual del PC en el

registro indicado en el primer operando y actualiza el valor del

PC con el del segundo operando (inmediato de 20 bits

extendidos en signo a 32).

64

Saltos incondicionales

En los casos anteriores el valor del PC se actualizaba solamente

cuando se cumpĺıa una condición luego de comparar el valor de dos

operandos. Para realizar una actualización (salto) incondicional del

valor del PC se utilizan las instrucciones:

• j (jump): que simplemente actualiza el valor del PC con el del

operando provisto (inmediato de 20 bits extendidos en signo a

32).

• jal (jump and link): que almacena el valor actual del PC en el

registro indicado en el primer operando y actualiza el valor del

PC con el del segundo operando (inmediato de 20 bits

extendidos en signo a 32).

64

Saltos incondicionales

1 j t a r g e t

2 s r a i s1 , s1 , 2

3 add i s1 , s1 , 1

4 sub s1 , s1 , s0

5 t a r g e t :

6 add s1 , s1 , s0

En este ejemplo la segunda, tercera y cuarta instrucción no se

ejecutan, ya que el salto incondicional de la primera instrucción

cont́ınua la ejecución en add s1, s1, s0.

65

Saltos incondicionales

1 j t a r g e t

2 s r a i s1 , s1 , 2

3 add i s1 , s1 , 1

4 sub s1 , s1 , s0

5 t a r g e t :

6 add s1 , s1 , s0

En este ejemplo la segunda, tercera y cuarta instrucción no se

ejecutan, ya que el salto incondicional de la primera instrucción

cont́ınua la ejecución en add s1, s1, s0.

65

Escribiendo un loop

C RISC V

// c a l c u l a e l v a l o r de x

// t a l que 2 a l a x es 128

i n t pow = 1 :

i n t x = 0 ;

wh i l e (pow != 128) {
pow = pow ∗ 2 ;

x = x + 1 ;

}

#s0=pow , s1=x

add i s0 , zero , 1

add s1 , zero , z e r o

#t0=128

add i t0 , zero , 128

wh i l e :

beq s0 , t0 , f i n

s l l i s0 , s0 , 1 #pow=pow∗2
add i s1 , s1 , 1 #x+=1

j wh i l e

f i n :

Esta traducción indica como podemos implementar un ciclo while

con un salto condicional y uno incondicional.

66

Escribiendo un loop

C RISC V

// c a l c u l a e l v a l o r de x

// t a l que 2 a l a x es 128

i n t pow = 1 :

i n t x = 0 ;

wh i l e (pow != 128) {
pow = pow ∗ 2 ;

x = x + 1 ;

}

#s0=pow , s1=x

add i s0 , zero , 1

add s1 , zero , z e r o

#t0=128

add i t0 , zero , 128

wh i l e :

beq s0 , t0 , f i n

s l l i s0 , s0 , 1 #pow=pow∗2
add i s1 , s1 , 1 #x+=1

j wh i l e

f i n :

Esta traducción indica como podemos implementar un ciclo while

con un salto condicional y uno incondicional.
66

Intervalo

Lenguaje de máquina

Lenguaje de máquina

El lenguaje ensamblador es un lenguaje de bajo nivel pero los

programas escritos en este lenguaje no pueden ser ejecutados por

el procesador, es por eso que el código fuente debe ser ensamblado

para producir el archivo binario cuyos contenidos pueden ser

cargados en memoria y ejecutados.

67

Instrucciones R

Las instrucciones de tipo R utilizan dos registros como operandos

fuente (rs1, rs2) y uno como operando destino rd. El campo op

junto con funct7 y funct3 determinan el tipo de instrucción

codificada.

68

Instrucciones R, ejemplos

69

Instrucciones I

Las instrucciones de tipo I utilizan un registros como operando

fuente (rs1), un inmediato de 12 bits (imm) y uno como operando

destino rd. El campo op junto con funct3 determinan el tipo de

instrucción codificada.

70

Instrucciones I, ejemplos

71

Instrucciones S/B

Las instrucciones de carga (S) y de saltos condicionales (B) se

codifican como se indica a continuación. Ambos formatos codifican

un inmediato en la instrucción, en el caso de las isntrucciones de

carga es de 12 bits, en los saltos condicionales es de 13 bits y

expresa el desplazamiento en complemento a 2 al que se debe

saltar en relación al valor actual del PC. Este desplazamiento

(offset) siempre se desplaza una posición a izquierda antes de

sumarlo al PC ya que se encuentra siempre en posiciones pares.

72

Instrucciones S, ejemplos

73

Instrucciones B, ejemplos

74

Instrucciones U/J

Las instrucciones de inmediato superior (U) y de saltos

incondicionales (J) se codifican como se indica a continuación.

Ambos formatos codifican un inmediato en la instrucción, en el

caso de las instrucciones de inmediato superior es de 20 bits, en los

saltos incondicionales es de 21 bits y expresa el valor de los 21 bits

más altos de la dirección a la que se debe saltar en relación al valor

actual del PC. Este desplazamiento (offset) siempre se desplaza

una posición a izquierda antes de sumarlo al PC ya que se

encuentra siempre en posiciones pares.

75

Instrucciones U, ejemplos

76

Instrucciones J, ejemplos

77

Decodificación

Es importante comprender el formato con el que se codifican las

instrucciones al traducirlas al lenguaje máquina para poder realizar

tanto la codificación como la decodificación de las mismas en caso

de ser necesario.

78

Ejemplo de decodificación

79

Compilación, ensamblado y ejecución

Cadena de compilación

Hab́ıamos presentado anteriormente el esquema de traducciones

que nos permite llegar de código de alto nivel a un formato binario

que pueda cargarse en la memoria principal para poder ejecutar,

vamos a repasarlo y a presentar el mapa de memoria.

80

Repaso de la cadena de compilación

Código de alto nivel

(Compilador)

Código de bajo nivel

(Ensamblador)

Código objeto

(Enlazador)

Código objeto en archivos

Bibliotecas

Código binario ejecutable

81

El mapa de memoria

82

El mapa de memoria

El mapa de memoria divide a la memoria principal según su uso:

• La región más alta se reserva para comunicaćıon de entrada y

salida.

• Luego se encuentra la región de datos dinámicos donde en las

direcciones altas vamos a encontrar la pila (stack)y en las

direcciones bajas el heap que es la estructura que permite a

un programa hacer un pedido expĺıcito de memoria (malloc,

free, sin usar el stack).

• Luego se encuentran los datos globales(.global), donde se

almacenan variables y constantes globales.

• Y luego el texto(.text), que es donde se encuentra el

contenido binario de nuestro programa.

83

El mapa de memoria

El mapa de memoria divide a la memoria principal según su uso:

• La región más alta se reserva para comunicaćıon de entrada y

salida.

• Luego se encuentra la región de datos dinámicos donde en las

direcciones altas vamos a encontrar la pila (stack)y en las

direcciones bajas el heap que es la estructura que permite a

un programa hacer un pedido expĺıcito de memoria (malloc,

free, sin usar el stack).

• Luego se encuentran los datos globales(.global), donde se

almacenan variables y constantes globales.

• Y luego el texto(.text), que es donde se encuentra el

contenido binario de nuestro programa.

83

El mapa de memoria

El mapa de memoria divide a la memoria principal según su uso:

• La región más alta se reserva para comunicaćıon de entrada y

salida.

• Luego se encuentra la región de datos dinámicos donde en las

direcciones altas vamos a encontrar la pila (stack)y en las

direcciones bajas el heap que es la estructura que permite a

un programa hacer un pedido expĺıcito de memoria (malloc,

free, sin usar el stack).

• Luego se encuentran los datos globales(.global), donde se

almacenan variables y constantes globales.

• Y luego el texto(.text), que es donde se encuentra el

contenido binario de nuestro programa.

83

El mapa de memoria

El mapa de memoria divide a la memoria principal según su uso:

• La región más alta se reserva para comunicaćıon de entrada y

salida.

• Luego se encuentra la región de datos dinámicos donde en las

direcciones altas vamos a encontrar la pila (stack)y en las

direcciones bajas el heap que es la estructura que permite a

un programa hacer un pedido expĺıcito de memoria (malloc,

free, sin usar el stack).

• Luego se encuentran los datos globales(.global), donde se

almacenan variables y constantes globales.

• Y luego el texto(.text), que es donde se encuentra el

contenido binario de nuestro programa.

83

El mapa de memoria

El mapa de memoria divide a la memoria principal según su uso:

• La región más alta se reserva para comunicaćıon de entrada y

salida.

• Luego se encuentra la región de datos dinámicos donde en las

direcciones altas vamos a encontrar la pila (stack)y en las

direcciones bajas el heap que es la estructura que permite a

un programa hacer un pedido expĺıcito de memoria (malloc,

free, sin usar el stack).

• Luego se encuentran los datos globales(.global), donde se

almacenan variables y constantes globales.

• Y luego el texto(.text), que es donde se encuentra el

contenido binario de nuestro programa.

83

El mapa de memoria

84

Directivas de ensamblado

Existen algunas directivas, que no son realmente instrucciones, sino

indicaciones para que el progama ensamblador puede reservar

memoria, definir constantes y ubicar el programa y los datos según

las secciones definidas en el mapa de memoria, a continuación

presentamos algunas.

85

Directivas de ensamblado

86

Sección de datos y de texto

Veamos por ejemplo cómo se inicializan los datos en la sección de

.data que va a ubicar la información en lo que el mapa se muestra

como Global Data, arriba del código (.text), mostramos:

• Una constante largo de 32 bits (una palabra o word).

• Una constante caracter de 8 bits (un byte).

• Un arreglo arreglo de palabras de 32 bits.

87

Sección de datos y de texto

Veamos por ejemplo cómo se inicializan los datos en la sección de

.data que va a ubicar la información en lo que el mapa se muestra

como Global Data, arriba del código (.text), mostramos:

• Una constante largo de 32 bits (una palabra o word).

• Una constante caracter de 8 bits (un byte).

• Un arreglo arreglo de palabras de 32 bits.

87

Sección de datos y de texto

Veamos por ejemplo cómo se inicializan los datos en la sección de

.data que va a ubicar la información en lo que el mapa se muestra

como Global Data, arriba del código (.text), mostramos:

• Una constante largo de 32 bits (una palabra o word).

• Una constante caracter de 8 bits (un byte).

• Un arreglo arreglo de palabras de 32 bits.

87

Sección de datos y de texto

Veamos por ejemplo cómo se inicializan los datos en la sección de

.data que va a ubicar la información en lo que el mapa se muestra

como Global Data, arriba del código (.text), mostramos:

• Una constante largo de 32 bits (una palabra o word).

• Una constante caracter de 8 bits (un byte).

• Un arreglo arreglo de palabras de 32 bits.

87

Inicializando datos

1 . s e c t i o n . d a t a

2 # A p a r t i r de e s t e punto comienzan l o s da to s

3 l a r g o : .word 0x4

4 c a r a c t e r : . b y t e 10

5 a r r e g l o : .word 0xc , 0x34d , 0x1 , 0x0

6 . s e t i o n . t e x t

7 # A p a r t i r de e s t e punto comienzan l a s

i n s t r u c c i o n e s

88

Sección de datos y de texto

Al igual que con los saltos en el programa, las etiquetas que

declaran constantes van a indicar la posición de memoria desde

donde debe cargarse el dato.

89

Cierre

Clase de hoy

Hoy vimos:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

90

Clase de hoy

Hoy vimos:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

90

Clase de hoy

Hoy vimos:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

90

Clase de hoy

Hoy vimos:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

• Codificación de instrucciones, compilación y ensamblado.

90

¡Eso es todo por hoy!

Sistemas Digitales

Arquitectura 2/2

Primer Cuatrimestre 2025

Sistemas Digitales

DC - UBA

1

Introducción

Clase anterior

En la clase anterior vimos:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

2

Clase anterior

En la clase anterior vimos:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

2

Clase anterior

En la clase anterior vimos:

• Definición de arquitecturas.

• El lenguaje ensamblador de RISC V.

• Lenguaje máquina y programa almacenado en memoria.

2

Clase de hoy

Hoy vamos a ver:

• Acceso a memoria y estructuras.

• Interfaz binaria de aplicación.

• Uso de la pila.

3

Clase de hoy

Hoy vamos a ver:

• Acceso a memoria y estructuras.

• Interfaz binaria de aplicación.

• Uso de la pila.

3

Clase de hoy

Hoy vamos a ver:

• Acceso a memoria y estructuras.

• Interfaz binaria de aplicación.

• Uso de la pila.

3

Repaso

¿Qué constituye una arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

4

Repaso

¿Qué constituye una arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

4

Repaso

¿Qué constituye una arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

4

Repaso

¿Qué constituye una arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

4

Repaso

¿Qué constituye una arquitectura?

• El conjunto de instrucciones.

• El conjunto de registros.

• La forma de acceder a la memoria.

¿Qué es una instrucción, un registro o una memoria?

4

Clase anterior

Volvamos a nuestro programa de referencia y al ejemplo de control

de ejecución.

5

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

6

Escribiendo un loop

C RISC V

// c a l c u l a e l v a l o r de x

// t a l que 2 a l a x es 128

i n t pow = 1 :

i n t x = 0 ;

wh i l e (pow != 128) {
pow = pow ∗ 2 ;

x = x + 1 ;

}

#s0=pow , s1=x

add i s0 , zero , 1

add s1 , zero , z e r o

#t0=128

add i t0 , zero , 128

wh i l e :

beq s0 , t0 , f i n

s l l i s0 , s0 , 1 #pow=pow∗2
add i s1 , s1 , 1 #x+=1

j wh i l e

f i n :

Esta traducción indica como podemos implementar un ciclo while

con un salto condicional y uno incondicional.

7

Escribiendo un loop

C RISC V

// c a l c u l a e l v a l o r de x

// t a l que 2 a l a x es 128

i n t pow = 1 :

i n t x = 0 ;

wh i l e (pow != 128) {
pow = pow ∗ 2 ;

x = x + 1 ;

}

#s0=pow , s1=x

add i s0 , zero , 1

add s1 , zero , z e r o

#t0=128

add i t0 , zero , 128

wh i l e :

beq s0 , t0 , f i n

s l l i s0 , s0 , 1 #pow=pow∗2
add i s1 , s1 , 1 #x+=1

j wh i l e

f i n :

Esta traducción indica como podemos implementar un ciclo while

con un salto condicional y uno incondicional.
7

Manejo de estructuras

Direcciones de memoria

Recordemos cómo se realiza el acceso a datos en memoria.

8

Direcciones de memoria

RISC V permite acceder a la memoria con ı́ndices (direcciones) de

32 bits, o sea 4.294.967.296 ı́ndices posibles. Pero cabe notar que

el ı́ndice apunta a un byte en particular, o sea, a uno de los cuatro

bytes de la palabra, de modo que entre una palabra de 32 bits y

otra, los ı́ndices avanzan en cuatro unidades. Podemos indicar que

la lectura o escritura se hará en base a un byte en particular.

9

Accesos a memoria (direcciones)

A la izquierda (a), vemos los ı́ndices de memoria (byte address)

representados de derecha a izquierda, donde a la derecha vemos el

byte menos significativo (LSB) y a la derecha el byte más

significativo de la palabra (MSB). La dirección de palabra (word

address) corresponde al ı́ndice del byte menos significativo de ésta.

10

Estructura de los arreglos

Los arreglos son estructuras que ubican elementos del mismo

tamaño y tipo de forma consecutiva en la memoria del procesador.

En un lenguaje de alto nivel, la forma de acceder a un elemento es

a partir de una dirección base y la posición en el arreglo, a la que

llamamos su ı́ndice. La forma de acceder en lenguaje ensamblador

es calculando el desplazamiento desde la dirección del comienzo del

arreglo hasta la dirección en la que se encuentra el elemento.

11

Acceso a un elemento del arreglo

En este ejemplo el arreglo scores contiene 200 elementos de 32

bits y comienza en la dirección 0x174300A0. La forma de acceder

al i-ésimo elemento es cargando el dato que se encuentra en base

+ tama~no * ı́ndice, en este caso, si queremos acceder al

elemento 199 seŕıa 0x174300A0 + 4 * 198 = 0x174303B8.

12

Acceso a un elemento del arreglo

En el siguiente ejemplo se incrementa el valor de cada elemento del

arreglo en 10.

13

Incrementando los valores de un arreglo

C RISC V

i n t i ;

i n t s c o r e s [2 0 0] ;

f o r (i = 0 ; i < 200 ; i = i + 1) {
s c o r e s [i] = s c o r e s [i] + 10 ;

}

#s0=d i r . s c o r e s , s1=i

add i s1 , zero , 0

add i t2 , zero , 200

f o r :

bge s1 , t2 , f i n

s l l i t0 , s1 , 2

add t0 , t0 , s0

lw t1 , 0(t0)

add i t1 , t1 , 10

sw t1 , 0(t0)

add i s1 , s1 , 1

j f o r

f i n :

14

Interfaz binaria de aplicación

Llamadas a función

i n t main () {
i n t y ;

. . .

y = d i f s uma s (2 , 3 , 4 , 5) ;

. . .

}
i n t d i f s uma s (i n t f , i n t g ,

i n t h , i n t i) {
i n t r e s u l t a d o :

r e s u l t a d o = (f+g)−(h+i) ;

r e t u r n r e s u l t a d o ;

}

¿Cómo escribimos funciones en RISC V pasando un número

arbitrario de parámetros y devolviendo un parámetro de retorno?

15

Definiendo un contrato

i n t main () {
i n t y ;

. . .

y = d i f s uma s (2 , 3 , 4 , 5) ;

. . .

}
i n t d i f s uma s (i n t f , i n t g ,

i n t h , i n t i) {
i n t r e s u l t a d o :

r e s u l t a d o = (f+g)−(h+i) ;

r e t u r n r e s u l t a d o ;

}

Recordemos que contamos con una memoria principal direccionable

y un número acotado de registros y con esto vamos a tener que

definir un contrato que indique de qué forma se realizan las

llamadas a función. 16

Interfaz binaria de aplicación

A este contrato que indica de qué forma vamos a realizar las

llamadas a función para una arquitectura en particular lo llamamos

interfaz binaria de aplicación. Define un conjunto de reglas que

tanto quienes programan en ensamblador RISC V como el

programa de compilación de un lenguaje de alto nivel a

ensamblador RISC V deben respetar para poder interactuar con

otros programas, llamadas a sistema y bibliotecas compartidas.

17

Ejemplo con argumentos

C RISC V

i n t main () {
i n t y ;

. . .

y = d i f s uma s (2 , 3 , 4 , 5) ;

. . .

}
i n t d i f s uma s (i n t f , i n t g ,

i n t h , i n t i) {
i n t r e s u l t a d o :

r e s u l t a d o = (f+g)−(h+i) ;

r e t u r n r e s u l t a d o ;

}

main :#s7=y

add i a0 , zero , 2

add i a1 , zero , 3

add i a2 , zero , 4

add i a3 , zero , 5

j a l d i f s uma s

add s7 , a0 , z e r o

d i f s ums :#s3=r e s u l t

add t0 , a0 , a1

add t1 , a2 , a3

sub s3 , t0 , t1

add a0 , s3 , z e r o

j r r a

18

Llamadas a función, argumentos

En un lenguaje de alto nivel los programas se dividen en funciones

que pueden llamarse unas o otras. Para implementar esta

funcionalidad se debe decidir de qué manera una función puede

identificar a otra y cómo se enviarán los parámetros de entrada y

de salida. Los parámetros de entrada serán llamados argumentos y

los de salida valor de retorno.

19

Llamadas a función, jal

En RISC V la función llamadora puede utilizar los registros a0

hasta a7 para enviar argumentos y luego la función llamada utiliza

a0 para copiar el valor de retorno. A la hora de invocar la ejecución

de una función la función llamadora debe almacenar el PC en ra.

Esto se consigue utilizando la instrucción jal ra, foo, donde

foo es la función llamada.

20

Llamadas a función, preservando estado

La función llamada no debe interferir con el estado de la función

llamadora, debido a esto debe respetar los valores de los registros

guardados (s0 a s11) y el registro de la dirección de retorno (ra),

que indica cómo retornar la ejecución a la función llamadora.

También debe mantenerse invariante la porción de memoria

(stack) correspondiente a función llamadora.

21

Ejemplo de llamada

C RISC V

i n t main () {
s imp l e () ;

. . .

}

vo i d s imp l e () {
r e t u r n ;

}

0x00000300 main : j a l ra , s imp l e

0x00000304 . . .

.

0x0000051 c s imp l e : j r r a

Un ejemplo de llamada a simple y un retorno con un salto

incondicional al registro de la direccón de retorno jr ra.

22

Ejemplo de llamada

C RISC V

i n t main () {
s imp l e () ;

. . .

}

vo i d s imp l e () {
r e t u r n ;

}

0x00000300 main : j a l ra , s imp l e

0x00000304 . . .

.

0x0000051 c s imp l e : j r r a

Un ejemplo de llamada a simple y un retorno con un salto

incondicional al registro de la direccón de retorno jr ra.

22

Ejemplo con argumentos

A continuación presentamos un ejemplo que involucra argumentos.

23

Ejemplo con argumentos

C RISC V

i n t main () {
i n t y ;

. . .

y = d i f s uma s (2 , 3 , 4 , 5) ;

. . .

}
i n t d i f s uma s (i n t f , i n t g ,

i n t h , i n t i) {
i n t r e s u l t a d o :

r e s u l t a d o = (f+g)−(h+i) ;

r e t u r n r e s u l t a d o ;

}

main :#s7=y

add i a0 , zero , 2

add i a1 , zero , 3

add i a2 , zero , 4

add i a3 , zero , 5

j a l d i f s uma s

add s7 , a0 , z e r o

d i f s ums :#s3=r e s u l t

add t0 , a0 , a1

add t1 , a2 , a3

sub s3 , t0 , t1

add a0 , s3 , z e r o

j r r a

24

Uso de la pila y el stack pointer

¿Qué es la pila?

La pila es:

• Una región de la memoria definida entre una dirección de

memoria alta y la dirección indicada en el registro stack

pointer (sp).

• Un mecanismo para almacenar valores temporarios con una

semántica de LIFO (el último elemento almacenado es el

primero al que accedemos).

25

¿Qué es la pila?

La pila es:

• Una región de la memoria definida entre una dirección de

memoria alta y la dirección indicada en el registro stack

pointer (sp).

• Un mecanismo para almacenar valores temporarios con una

semántica de LIFO (el último elemento almacenado es el

primero al que accedemos).

25

¿Qué es la pila?

La pila es:

• Una región de la memoria definida entre una dirección de

memoria alta y la dirección indicada en el registro stack

pointer (sp).

• Un mecanismo para almacenar valores temporarios con una

semántica de LIFO (el último elemento almacenado es el

primero al que accedemos).

25

La pila (stack)

La semántica de uso es a través de operación de agregado (push)

y retiro (pop) de un elemento siempre al tope de la pila. La pila

suele comenzar en las direcciones altas de la memoria y va

tomando (con cada push) las direcciones inmediatamente más

bajas. Por eso se suele decir que la pila crece hacia abajo.

26

Stack pointer (sp)

Al igual que en muchas otras arquitecturas, RISC V propone el uso

de uno de sus registros, sp (stack pointer), para indicar la

dirección de tope de pila. En este ejemplo vemos como se actualiza

la pila (y el stack pointer) luego de agegar dos palabras de 32 bits

(0x12345678 y 0xFFEEDDCC) cambiando el sp de 0xBEFFFAE8 a

0xBEFFFAE0 (sp apunta al último elemento cargado).

27

La pila (stack)

Parte de la convención de RISC V (interfaz binaria de aplicación)

indica que el stack pointer debe siempre estar alineado a 16 bytes,

esto significa que su valor debe siempre cumplir con la congruencia

sp%16 == 0

.

28

La pila (stack)

Veamos un breve ejemplo del uso de la pila y la alineación del

stack pointer.

ap i l a ndo (push) en una l l amada a f un c i o n

foo : add i sp , sp , −16 # res tamos 16 aunque

p r e c i s emos 8 by t e s

sw a0 , 4(sp) #guarda a0

sw ra , 0(sp) #guarda ra

cuerpo de l a f u n c i o n

de s a p i l a n do (pop)

lw a0 , 4(sp) #r e s t a u r a a0

lw ra , 0(sp) #r e s t a u r a ra

add i sp , sp , 16 # r e s t a u r a e l v a l o r de s t a c k

p o i n t e r

29

La pila y las llamadas a función

Hab́ıamos dicho que al llamar a una función hab́ıa un acuerdo

entre la función llamadora (la que inicia la llamada) y la función

llamada (la que la recibe), donde se preservaba parte del estado del

procesador entre el llamado y el retorno.

30

Reglas para llamar funciones

Vamos a presentar una serie de reglas que debeŕıan asegurar que

cada función llamadora entrega y cada función llamada recibe a los

elementos de memoria del procesador (registros, memoria general y

pila) en un estado conocido.

31

Reglas de llamada

32

Estado del procesador entre llamadas

Reglas de preservación de estado:

• Regla para la llamadora: Antes de llamar debe guardar los

valores de los registros temporarios que necesite utilizar al

retornar (t0-t6, a0-a7).

• Regla para la llamada: Si va a utilizar los registros

permanentes (s0-s11, ra) debe guardarlos al comenzar y

restaurarlos antes de retornar.

Para esto podemos utilizar la pila.

33

Estado del procesador entre llamadas

Reglas de preservación de estado:

• Regla para la llamadora: Antes de llamar debe guardar los

valores de los registros temporarios que necesite utilizar al

retornar (t0-t6, a0-a7).

• Regla para la llamada: Si va a utilizar los registros

permanentes (s0-s11, ra) debe guardarlos al comenzar y

restaurarlos antes de retornar.

Para esto podemos utilizar la pila.

33

Estado del procesador entre llamadas

Reglas de preservación de estado:

• Regla para la llamadora: Antes de llamar debe guardar los

valores de los registros temporarios que necesite utilizar al

retornar (t0-t6, a0-a7).

• Regla para la llamada: Si va a utilizar los registros

permanentes (s0-s11, ra) debe guardarlos al comenzar y

restaurarlos antes de retornar.

Para esto podemos utilizar la pila.

33

Estado del procesador entre llamadas

Reglas de preservación de estado:

• Regla para la llamadora: Antes de llamar debe guardar los

valores de los registros temporarios que necesite utilizar al

retornar (t0-t6, a0-a7).

• Regla para la llamada: Si va a utilizar los registros

permanentes (s0-s11, ra) debe guardarlos al comenzar y

restaurarlos antes de retornar.

Para esto podemos utilizar la pila.

33

Ejemplo recursivo

C RISC V

i n t f a c t o r i a l (i n t n) {
i f (n <= 1) {
r e t u r n 1 ;

} e l s e {
r e t u r n

(n∗ f a c t o r i a l (n−1)) ;

}
}

f a c t o r i a l : add i sp , sp , −16

sw a0 , 4(sp) #guarda a0

sw ra , 0(sp) #guarda ra

add i t0 , zero , 1

bgt a0 , t0 , e l s e

add i a0 , zero , 1

add i sp , sp , 16

j r r a

e l s e : add i a0 , a0 , −1

j a l f a c t o r i a l

lw t1 , 4(sp)

lw ra , 0(sp)

add i sp , sp , 16

mul a0 , t1 , a0

j r r a

34

Stack pointer (sp)

Podemos ver como cada llamada recursiva utiliza una porción de la

pila para preservar su estado y aśı cumplir con las reglas antes

mencionadas, al espacio de la pila utilizado por la llamada en

cuestión lo llamamos marco de pila o stack frame.

35

Stack pointer (sp)

Aqúı la columna a muestra las posiciones altas de la memoria antes

de la primer llamada, la columna b muestra el estado luego de tres

llamadas recursivas y la columna c indica cómo se actualizan los

valores de a0 al ir regresando de cada llamada (jr ra).

36

Pseudoinstrucciones

Pseudoinstrucciones

Algunas de las instrucciones empleadas en el lenguaje ensamblador

no son verdaderamente instrucciones, en el sentido de que el

procesador no sabe interpretarlas, sino que es el compilador el que

se encarga de traducir una de estas aśı llamadas pseudointstrucción

en una instrucción propiamente dicha. El uso de las

pseudoinstrucciones se debe a que encapsulan operaciones comunes

y convenientes pero que no justifican su inclusión en el set de

instrucciones de la arquitectura si queremos mantenerlo acotado.

37

Ejemplos de pseudoinstrucciones

38

Interfaz binaria de aplicación en la

práctica

Recomendación a la hora de programar

No intenten memorizar los nombres de todas las instrucciones y su

semántica, tengan la documentación mientras escriben o hacen

seguimiento de sus programas de lenguaje ensamblador:

• Hoja con lista de registros e instrucciones.

• Reglas de llamada a función.

• Estructura de la memoria.

39

Recomendación a la hora de programar

Vuelvan a revisar el material de lectura (manuales, clases y

apuntes) tantas veces como haga falta. Hacer repetidas lecturas de

la documentación es parte de la práctica de la ingenieŕıa.

40

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

¿Qué podemos entender de la traducción que presentamos antes?

41

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

¿Qué podemos entender de la traducción que presentamos antes?

41

Programa de ejemplo en ASM (RISC V)

1 . s e c t i o n . t e x t

2 . g l o b a l s uma r a r r e g l o

3 s uma r a r r e g l o :

4 # a0 = i n t a [] , a1 = i n t l a r go , t0 = acumulador , t1

= i

5 l i t0 , 0 # acumulador = 0

6 l i t1 , 0 # i = 0

7 c i c l o : # Comienzo de c i c l o

8 bge t1 , a1 , f i n # S i i >= la rgo , s a l e d e l c i c l o

9 s l l i t2 , t1 , 2 # Mu l t i p l i c a i por 4 (1 << 2 = 4)

10 add t2 , a0 , t2 # Ac t u a l i z a l a d i r . de memoria

11 lw t2 , 0(t2) # De−r e f e r e n c i a l a d i r ,

12 add t0 , t0 , t2 # Agrega e l v a l o r a l acumulador

13 add i t1 , t1 , 1 # Inc rementa e l i t e r a d o r

14 j c i c l o # Vue lve a comenzar e l c i c l o

15 f i n :

16 mv a0 , t0 # Mueve t0 (acumulador) a a0

17 r e t # Devue lve v a l o r por a0 42

Revisión del programa de ejemplo

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

¿Qué podemos entender de la traducción que presentamos antes?

43

Programa de ejemplo en C

1 i n t s uma r a r r e g l o (i n t a [] , i n t l a r g o) {
2 i n t acumulador = 0 ;

3 i n t i ;

4 f o r (i = 0 ; i < l a r g o ; i++) {
5 acumulador = acumulador + a [i] ;

6 }
7 r e t u r n acumulador ;

8 }

¿Qué podemos entender de la traducción que presentamos antes?

43

Programa de ejemplo en ASM (RISC V)

1 . s e c t i o n . t e x t

2 . g l o b a l s uma r a r r e g l o

3 s uma r a r r e g l o :

4 # a0 = i n t a [] , a1 = i n t l a r go , t0 = acumulador , t1

= i

5 l i t0 , 0 # acumulador = 0

6 l i t1 , 0 # i = 0

7 c i c l o : # Comienzo de c i c l o

8 bge t1 , a1 , f i n # S i i >= la rgo , s a l e d e l c i c l o

9 s l l i t2 , t1 , 2 # Mu l t i p l i c a i por 4 (1 << 2 = 4)

10 add t2 , a0 , t2 # Ac t u a l i z a l a d i r . de memoria

11 lw t2 , 0(t2) # De−r e f e r e n c i a l a d i r ,

12 add t0 , t0 , t2 # Agrega e l v a l o r a l acumulador

13 add i t1 , t1 , 1 # Inc rementa e l i t e r a d o r

14 j c i c l o # Vue lve a comenzar e l c i c l o

15 f i n :

16 mv a0 , t0 # Mueve t0 (acumulador) a a0

17 r e t # Devue lve v a l o r por a0 44

Cierre

Clase de hoy

Hoy vimos:

• Acceso a memoria y estructuras.

• Interfaz binaria de aplicación.

• Uso de la pila.

45

Clase de hoy

Hoy vimos:

• Acceso a memoria y estructuras.

• Interfaz binaria de aplicación.

• Uso de la pila.

45

Clase de hoy

Hoy vimos:

• Acceso a memoria y estructuras.

• Interfaz binaria de aplicación.

• Uso de la pila.

45

Fin

Sistemas Digitales

Microarquitectura

Primer Cuatrimestre 2025

Sistemas Digitales

DC - UBA

1

Introducción

Clase de hoy

Hoy vamos a ver:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

2

Clase de hoy

Hoy vamos a ver:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

2

Clase de hoy

Hoy vamos a ver:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

2

Clase de hoy

Hoy vamos a ver:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

2

Microarquitectura

La microarquitectura se ubica conceptualmente entre la

arquitectura (aquello que se expone a la persona que programa el

sistema) y la lógica combinatoria y secuencial. Implementa el

soporte de estado arquitectónico y la lógica de control para

actualizar el estado según lo indique la semántica de las

instrucciones de la ISA.

3

Estado de la arquitectura

La microarquitectura va encargarse de actualizar el estado de la

arquitectura, o sea, los registros de propósito general y el

program counter. Recordemos que nos referimos como estado a

los valores almacenados en los elementos de memoria y por ende el

estado de la arquitectura se refiere a los elementos de memoria

expuestos a la persona que programa el sistema.

4

Estado de la arquitectura

El procesador puede contener elementos de memoria que

constituyen estado por fuera de la arquitectura, registros o banco

de memoria utilizados para implementar mecanismos o funciones

propios de la arquitectura pero que no son expuestos.

5

Instrucciones a evaluar

A la hora de justificar las decisiones de diseño e implementación de

una microarquitectura para RISCV, vamos a enfocarnos en un

subconjunto de las instrucciones básicas:

• Registros: add, sub, and, or, slt.

• Memoria: sw, lw.

• Salto: beq.

6

Instrucciones a evaluar

A la hora de justificar las decisiones de diseño e implementación de

una microarquitectura para RISCV, vamos a enfocarnos en un

subconjunto de las instrucciones básicas:

• Registros: add, sub, and, or, slt.

• Memoria: sw, lw.

• Salto: beq.

6

Instrucciones a evaluar

A la hora de justificar las decisiones de diseño e implementación de

una microarquitectura para RISCV, vamos a enfocarnos en un

subconjunto de las instrucciones básicas:

• Registros: add, sub, and, or, slt.

• Memoria: sw, lw.

• Salto: beq.

6

Instrucciones a evaluar

A la hora de justificar las decisiones de diseño e implementación de

una microarquitectura para RISCV, vamos a enfocarnos en un

subconjunto de las instrucciones básicas:

• Registros: add, sub, and, or, slt.

• Memoria: sw, lw.

• Salto: beq.

6

Proceso de diseño - Datapath

Para comenzar con el diseño de un sistema complejo, como es el

caso de nuestra microarquitectura, un enfoque posible es comenzar

presentando y vinculando a los elementos que realizarán

transformaciones con los datos, a esto lo llamaremos el camino de

datos o datapath.

7

Proceso de diseño - Unidad de control

Luego decidiremos cómo implementar la unidad que se asegura de

coordinar a los elementos del datapath para transformar a los

datos a partir de la manipulación de sus señales de control, a esto

lo llamaremos unidad de control.

8

Sobre los diagramas

En los diagramas se debe observar que:

• Las ĺıneas gruesas indican datos de 32 bits.

• Las ĺıneas delgadas indican datos de 1 bit.

• Las ĺıneas intermedias indican datos de otro tamaño.

• Las ĺıneas azules indican señales de control.

9

Sobre los diagramas

En los diagramas se debe observar que:

• Las ĺıneas gruesas indican datos de 32 bits.

• Las ĺıneas delgadas indican datos de 1 bit.

• Las ĺıneas intermedias indican datos de otro tamaño.

• Las ĺıneas azules indican señales de control.

9

Sobre los diagramas

En los diagramas se debe observar que:

• Las ĺıneas gruesas indican datos de 32 bits.

• Las ĺıneas delgadas indican datos de 1 bit.

• Las ĺıneas intermedias indican datos de otro tamaño.

• Las ĺıneas azules indican señales de control.

9

Sobre los diagramas

En los diagramas se debe observar que:

• Las ĺıneas gruesas indican datos de 32 bits.

• Las ĺıneas delgadas indican datos de 1 bit.

• Las ĺıneas intermedias indican datos de otro tamaño.

• Las ĺıneas azules indican señales de control.

9

Sobre los diagramas

En los diagramas se debe observar que:

• Las ĺıneas gruesas indican datos de 32 bits.

• Las ĺıneas delgadas indican datos de 1 bit.

• Las ĺıneas intermedias indican datos de otro tamaño.

• Las ĺıneas azules indican señales de control.

9

Elementos de memoria

Ahora vamos a presentar y estudiar los elementos de memoria del

datapath.

10

Elementos de memoria

11

PC

La salida PC indica la posición de la instrucción actual, PCNext

es la entrada que indica la posición de la próxima instrucción.

12

Memoria de instrucciones

La memoria de instrucciones toma una dirección A de 32 bits y

vuelca el valor de 32 bits que se encuentra en esa posición por la

salida RD.

13

Archivo de registros

El archivo de registros contiene los 32 registros x0-x31 y tiene dos

puertos (salidas de datos) de lectura (RD1 y RD2) que vuelcan el

valor de los registros en la posiciones indicadas por las entradas A1

y A2. También cuenta con un tercer puerto de escritura (entrada

de datos) WD3 que escribe el dato recibido en la posición indicada

por A3 durante el flanco ascendente de reloj si la señal de control

WE3 se encuentra alta.

14

Memoria de datos

La memoria de datos toma una dirección A de 32 bits y lee el valor

de 32 bits que se encuentra en esa posición por la salida RD si el

valor de la señal de control WE se encuentra bajo o escribe el

contenido que ingresa por WD durante el flanco ascendente del

ciclo de clock si se encuentra alto.

15

Procesador de ciclo simple

Procesador de ciclo simple

Vamos a estudiar una microarquitectura donde las operaciones se

completan durante un único cilo de reloj, por lo que la

duración del ciclo debe ser suficientemente larga como para

permitir completar la operación más costosa (las que toma más

tiempo). Esto significa que el rendimiento del procesador no será

óptimo pero resulta conveniente como ejemplo introductorio a las

microarquitecturas.

16

Programa de ejemplo

Utilizaremos el siguiente programa de ejemplo para justificar la

interacción entre el datapath y la unidad de control e iremos

conectando los elementos de memoria y agregando elementos y

señales de control a medida que haga falta.

17

Programa de ejemplo

Aqúı podemos ver la posición de memoria en la que se encuentran

las instrucciones codificadas, sus mnemónicos y la división de los

distintas partes de cada palabra de 32 bits según su interpretación

para la arquitectura.

18

Instrucciones de memoria

Instrucciones de memoria

Comenzaremos estudiando los componentes involucrados con la

lectura de la instrucción de memoria y la ejecución de la primera

instrucción (fetch y lw).

19

Fetch

Vemos que la salida de PC indica la dirección A desde donde leer

la instrucción actual de la memoria de instrucciones. La instrucción

codificada es la que corresponde a una lectura de memoria (lw).

20

Lectura de memoria

Los bits 19:15 de la instrucción indican el ı́ndice de 5 bits del

operando fuente (registro) que contiene la base de la dirección a

leer de memoria, por este motivo conectamos esta parte de la

salida de datos de la memoria de instrucciones RD a la entrada de

dirección de lectura A1 del archivo de registros.

21

Extensión del desplazamiento

El cómputo de la dirección toma en cuenta también el

desplazamiento, que en esta instrucción se codifica como los 12

bits que se encuentran en 31:20, como se trata de un valor en

complemento a dos que debemos sumar a la base, es necesario

extenderlo con un componente adicional.

22

Sumando la base

Para calcular la dirección de lectura utilizamos la ALU, ingresando

base y desplazamiento como entradas e indicando que la opreación

a realizar es una suma.

23

Escritura a registro

El valor resultante define la dirección A desde donde leer la

memoria de datos, cuyo resultado RD es ingresado en el puerto de

escritura WD3 del archivo de registros a la vez que cargamos los

bits 11:7 de la instrucción a la dirección de escritura y habilitamos

la señal de control WE3.

24

Actualizando el PC

Mientras se está ejecutando esta instrucción debemos, a la par,

calcular la posición desde donde leer la próxima instrucción, para

esto utilizamos un sumador que incrementa en 4 el valor acual del

PC y lo carga en PCNext.

25

Escritura a registro

Para una escritura a memoria (sw), se utiliza el mismo mecanismo

para determinar la dirección con una base y desplazamiento, pero

se realiza una segunda lectura desde el banco de registros a través

de los bits 24:20 de la instrucción indicando la posición en A2 y

asignando la salida RD2 al puerto de escritura WD de la memoria

de datos mientras se habilita WE.
26

Instrucciones con registros

Estructura de las instrucciones R

Las instrucciones con registros van a respetar un mismo esquema,

donde tendremos dos registros de fuente, uno de destino y donde

vamos a utilizar a la ALU para distintas operaciones según la

semántica de cada caso.

27

Datapath actualizado

Agregamos dos multiplexores, uno para permitir usar el segundo

puerto de lectura del archivo de registros RD2 como segundo

operando de la ALU, y otro para permitir usar la salida de la ALU

como dato a escribir en el puerto de escritura del archivo de

registros WD3. La entrada de operación de la ALU determina la

semántica de la instrucción.
28

Diseño incremental

Podemos notar que el diseño de esta microarquitectura realiza las

operaciones necesarias para computar todas la instrucciones

presentadas hasta ahora y permite decidir cuáles salidas actualizan

el estado del procesador en base a las señales de control de las

memorias, el extensor de signo, la ALU y los multiplexores.

29

Datapath actualizado

Observemos las señales de control: RegWrite, ImmSrc, ALUSrc,

ALUControl, MemWrite, ResultSrc. El manejo de estas señales

será la responsabilidad de la unidad de control.

30

Instrucciones de salto

Salto condicional

Las instrucciones de salto condicional definen un desplazamiento

con respecto al PC de 13 bits codificado en 12 bits, donde el

último bit se supone siempre en cero, es por esto que el extensor

de signo debe tratar este caso por separado, con lo que su entrada

de control pasa a tener dos bits.

31

Extensión de signo

En esta tabla vemos cómo debe intepretar y extender las entradas

el extensor para cada caso según el tipo de instrucción. Esto se le

indica a través de la entrada de control ImmSrc de dos bits.

32

Instrucciones de salto

Agregando el caso necesario al extensor, un multiplexor y un

sumador para actualizar la entrada de PCNext, podemos

implementar soporte para saltos condicionales. El multiplexor

selecciona la segunda entrada solamente si se cumple la condición

de salto (en este caso si el flag Z está activado).
33

Lógica de control

Lógica de control

Aqúı vemos el datapath y la unidad de control de un procesador

de ciclo simple, con sus entradas, salidas y señales de control.

34

Unidad de control en cascada

La unidad de control se puede desacoplar de forma jerárquica entre

el controlador y el decodificador, donde el decodificador decide

qué operación realizar en la ALU, también se agrega una

compuerta AND para decidir si se realiza el salto condicional en el

caso de beq.

35

Unidad de control

El controlador debe implementar esta función en la versión

desacoplada, veamos que ALUOp indica simplemente si se debe

realizar una operación de la ALU o no, el decoder será responsable

de decidir cuál operación realizar.

36

Unidad de control

El decodificador debe implementar esta función en la versión

desacoplada.

37

Implementando ambas unidades

Con las técnicas vistas para los circuitos combinatorios podemos

implementar tanto el controlador como el decodificador.

38

Ejemplo de ejecución (and)

39

Add inmediate

Si quisiéramos agregar soporte para una suma con inmediato, seŕıa

suficiente agregar la siguiente ĺınea a la función del controlador.

40

Cierre

Repaso

Hoy vimos:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

41

Repaso

Hoy vimos:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

41

Repaso

Hoy vimos:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

41

Repaso

Hoy vimos:

• Definición de microarquitecturas.

• Estado de arquitectura, elementos de memoria, datapath y

unidad de control.

• Procesador de ciclo simple.

• Instrucciones de memoria, registros y saltos condicionales.

41

Fin

	Introducción
	Representación de la información
	Transformando los datos
	Técnicas de uso corriente
	Cierre
	Repaso: Algebra de Boole
	Compuertas, señales y tablas de verdad
	Entradas y salidas - Categorización
	Lógica proposicional a circuitos combinatorios
	Circuitos básicos
	Ejercicio I - Sumador Simple
	Ejercicio II - Sumador Completo
	Ejercicio III - Shift

	Timing
	Intervalo
	Introducción
	Latchs - Flip-flops
	Registros y memorias
	Conclusiones
	Introducción
	Lenguaje ensamblador
	Intervalo
	Programando con RISCV
	Instrucciones
	Intervalo
	Lenguaje de máquina
	Compilación, ensamblado y ejecución
	Cierre
	Fin
	Introducción
	Manejo de estructuras
	Interfaz binaria de aplicación
	Revisión del programa de ejemplo
	Cierre
	Fin
	Introducción
	Procesador de ciclo simple
	Instrucciones de memoria
	Instrucciones con registros
	Instrucciones de salto
	Lógica de control
	Cierre
	Fin

